31 research outputs found
Grain boundary pinning and glassy dynamics in stripe phases
We study numerically and analytically the coarsening of stripe phases in two
spatial dimensions, and show that transient configurations do not achieve long
ranged orientational order but rather evolve into glassy configurations with
very slow dynamics. In the absence of thermal fluctuations, defects such as
grain boundaries become pinned in an effective periodic potential that is
induced by the underlying periodicity of the stripe pattern itself. Pinning
arises without quenched disorder from the non-adiabatic coupling between the
slowly varying envelope of the order parameter around a defect, and its fast
variation over the stripe wavelength. The characteristic size of ordered
domains asymptotes to a finite value $R_g \sim \lambda_0\
\epsilon^{-1/2}\exp(|a|/\sqrt{\epsilon})\epsilon\ll 1\lambda_0a$ a constant of order unity. Random fluctuations allow defect motion to
resume until a new characteristic scale is reached, function of the intensity
of the fluctuations. We finally discuss the relationship between defect pinning
and the coarsening laws obtained in the intermediate time regime.Comment: 17 pages, 8 figures. Corrected version with one new figur
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Correlated evolution between hearing sensitivity and social calls in bats
Echolocating bats are auditory specialists, with exquisite hearing that spans several octaves. In the ultrasonic range, bat audiograms typically show highest sensitivity in the spectral region of their species-specific echolocation calls. Well-developed hearing in the audible range has been commonly attributed to a need to detect sounds produced by prey. However, bat pups often emit isolation calls with low-frequency components that facilitate mother–young reunions. In this study, we examine whether low-frequency hearing in bats exhibits correlated evolution with (i) body size; (ii) high-frequency hearing sensitivity or (iii) pup isolation call frequency. Using published audiograms, we found that low-frequency hearing sensitivity is not dependent on body size but is related to high-frequency hearing. After controlling for high-frequency hearing, we found that low-frequency hearing exhibits correlated evolution with isolation call frequency. We infer that detection and discrimination of isolation calls have favoured enhanced low-frequency hearing because accurate parental investment is critical: bats have low reproductive rates, non-volant altricial young and must often identify their pups within large crèches
A review of evidence on the environmental impact of Ireland’s Rural Environment Protection Scheme (REPS)
peer-reviewedSince its inception in 1994, there has been strong demand for evidence of the environmental effectiveness of the Rural Environment Protection Scheme (REPS), which paid farmers in the Republic of Ireland over €3 billion by 2010. A variety of research projects have been undertaken that investigate the environmental effects of REPS through an examination of either specific environmental measures or specific geographical areas. A review of available publications confirmed the absence of a comprehensive, national-scale study of the environmental impacts of REPS. Because of this, there is insufficient evidence with which to judge the environmental effectiveness of the national-scale implementation of the whole scheme. For some specific measures, however, sufficient evidence is available to inform an objective assessment in some cases, and to help learn how to improve environmental effectiveness in most cases. The majority of the REPS payments are now dedicated toward biodiversity objectives. Thus, biodiversity measures and options should be a priority for any national-scale environmental assessment of the scheme. Such a study would help identify the environmental benefits of REPS, the specific elements of REPS that are performing adequately, and those elements that are in need of improvement. Given the considerable overlap between REPS measures and options and those included in the 2010 Agri-Environment Options Scheme (AEOS), assessment of REPS measures could also be used to inform the likely environmental performance of the AEOS
Deactivation processes in isolated aromatic heterocycles and pyrenes
In der vorliegenden Arbeit wurde erfolgreich eine neue Gasphasen-Apparatur für
Photoelektronen-Imaging-Experimente simuliert, aufgebaut und in Verbindung mit einem ps-Lasersystem in Betrieb genommen.
Neben dem Aufbau der Apparatur stand die Aufklärung der Dynamik angeregter Zustände von aromatischen Heterocyclen und Pyrenen im Fokus dieser Arbeit. Die untersuchten Moleküle wurden durch Resonanzverstärkte Mehrphotonenionisation in einem Molekularstrahlexperiment sowohl zeit-, als auch frequenzaufgelöst untersucht.In the presented work a new gas phase apparatus for photoelectron imaging experiments was succesfully simulated, constructed and together with a ps laser system
put into operation.
Besides the building of the new apparatus, the focus of this work was set to elucidate the excited state dynamics of selected aromatic heterocycles and pyrenes. The
examined molecules were investigated by frequency- and time-resolved resonance enhanced multi photon ionisation spectroscopy using a molecular beam experiment