21 research outputs found

    Protein tyrosine phosphatase PTPN22 regulates LFA-1 dependent Th1 responses

    Get PDF
    A missense C1858T single nucleotide polymorphism within PTPN22 is a strong genetic risk factor for the development of multiple autoimmune diseases. PTPN22 encodes a protein tyrosine phosphatase that negatively regulates immuno-receptor proximal Src and Syk family kinases. Notably, PTPN22 negatively regulates kinases downstream of T-cell receptor (TCR) and LFA-1, thereby setting thresholds for T-cell activation. Alterations to the quality of TCR and LFA-1 engagement at the immune synapse and the regulation of downstream signals can have profound effects on the type of effector T-cell response induced. Here we describe how IFNγ+ Th1 responses are potentiated in Ptpn22−/− T-cells and in T-cells from mice expressing Ptpn22R619W (the mouse orthologue of the human genetic variant) as they age, or following repeated immune challenge, and explore the mechanisms contributing to the expansion of Th1 cells. Specifically, we uncover two LFA-1-ICAM dependent mechanisms; one T-cell intrinsic, and one T-cell extrinsic. Firstly, we found that in vitro anti-CD3/LFA-1 induced Th1 responses were enhanced in Ptpn22−/− T-cells compared to WT, whereas anti-CD3/anti-CD28 induced IFNy responses were similar. These data were associated with an enhanced ability of Ptpn22−/− T-cells to engage ICAM-1 at the immune synapse when incubated on planar lipid bilayers, and to form conjugates with dendritic cells. Secondly, we observed a T-cell extrinsic mechanism whereby repeated stimulation of WT OT-II T-cells with LPS and OVA323-339 pulsed Ptpn22−/− bone marrow derived dendritic cells (BMDCs) was sufficient to enhance Th1 cell development compared to WT BMDCs. Furthermore, this response could be reversed by LFA-1 blockade. Our data point to two related but distinct mechanisms by which PTPN22 regulates LFA-1 dependent signals to enhance Th1 development, highlighting how perturbations to PTPN22 function over time to regulate the balance of the immune response

    Cholesterol metabolism drives regulatory B cell IL-10 through provision of geranylgeranyl pyrophosphate.

    Get PDF
    Funder: Intramural Research Programs of the National Human Genome Research InstituteRegulatory B cells restrict immune and inflammatory responses across a number of contexts. This capacity is mediated primarily through the production of IL-10. Here we demonstrate that the induction of a regulatory program in human B cells is dependent on a metabolic priming event driven by cholesterol metabolism. Synthesis of the metabolic intermediate geranylgeranyl pyrophosphate (GGPP) is required to specifically drive IL-10 production, and to attenuate Th1 responses. Furthermore, GGPP-dependent protein modifications control signaling through PI3Kδ-AKT-GSK3, which in turn promote BLIMP1-dependent IL-10 production. Inherited gene mutations in cholesterol metabolism result in a severe autoinflammatory syndrome termed mevalonate kinase deficiency (MKD). Consistent with our findings, B cells from MKD patients induce poor IL-10 responses and are functionally impaired. Moreover, metabolic supplementation with GGPP is able to reverse this defect. Collectively, our data define cholesterol metabolism as an integral metabolic pathway for the optimal functioning of human IL-10 producing regulatory B cells

    IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses.

    Get PDF
    Mouse and human dendritic cells (DCs) are composed of functionally specialized subsets, but precise interspecies correlation is currently incomplete. Here, we showed that murine lung and gut lamina propria CD11b+ DC populations were comprised of two subsets: FLT3- and IRF4-dependent CD24(+)CD64(-) DCs and contaminating CSF-1R-dependent CD24(-)CD64(+) macrophages. Functionally, loss of CD24(+)CD11b(+) DCs abrogated CD4+ T cell-mediated interleukin-17 (IL-17) production in steady state and after Aspergillus fumigatus challenge. Human CD1c+ DCs, the equivalent of murine CD24(+)CD11b(+) DCs, also expressed IRF4, secreted IL-23, and promoted T helper 17 cell responses. Our data revealed heterogeneity in the mouse CD11b+ DC compartment and identifed mucosal tissues IRF4-expressing DCs specialized in instructing IL-17 responses in both mouse and human. The demonstration of mouse and human DC subsets specialized in driving IL-17 responses highlights the conservation of key immune functions across species and will facilitate the translation of mouse in vivo findings to advance DC-based clinical therapies

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    A Negative Feedback Loop Mediated by STAT3 Limits Human Th17 Responses

    No full text
    The transcription factor STAT3 is critically required for the differentiation of Th17 cells, a T cell subset involved in various chronic inflammatory diseases. In this article, we report that STAT3 also drives a negative-feedback loop that limits the formation of IL-17-producing T cells within a memory population. By activating human memory CD4(+)CD45RO(+) T cells at a high density (HiD) or a low density (LoD) in the presence of the pro-Th17 cytokines IL-1β, IL-23, and TGF-β, we observed that the numbers of Th17 cells were significantly higher under LoD conditions. Assessment of STAT3 phosphorylation revealed a more rapid and stronger STAT3 activation in HiD cells than in LoD cells. Transient inhibition of active STAT3 in HiD cultures significantly enhanced Th17 cell numbers. Expression of the STAT3-regulated ectonucleotidase CD39, which catalyzes ATP hydrolysis, was higher in HiD, than in LoD, cell cultures. Interestingly, inhibition of CD39 ectonucleotidase activity enhanced Th17 responses under HiD conditions. Conversely, blocking the ATP receptor P2X7 reduced Th17 responses in LoD cultures. These data suggest that STAT3 negatively regulates Th17 cells by limiting the availability of ATP. This negative-feedback loop may provide a safety mechanism to limit tissue damage by Th17 cells during chronic inflammation. Furthermore, our results have relevance for the design of novel immunotherapeutics that target the STAT3-signaling pathway, because inhibition of this pathway may enhance, rather than suppress, memory Th17 responses

    Cholesterol metabolism drives regulatory B cell IL-10 through provision of geranylgeranyl pyrophosphate

    No full text
    IL-10 production by B cells is integral to regulation and resolution of inflammation. Here the authors show that cholesterol metabolism can control B cell IL-10 production via a geranylgeranyl pyrophosphate-dependent mechanism

    Phosphatase PTPN22 Regulates Dendritic Cell Homeostasis and cDC2 Dependent T Cell Responses

    Get PDF
    Dendritic cells (DCs) are specialized antigen presenting cells that instruct T cell responses through sensing environmental and inflammatory danger signals. Maintaining the homeostasis of the multiple functionally distinct conventional dendritic cells (cDC) subsets that exist in vivo is crucial for regulating immune responses, with changes in numbers sufficient to break immune tolerance. Using Ptpn22−/− mice we demonstrate that the phosphatase PTPN22 is a highly selective, negative regulator of cDC2 homeostasis, preventing excessive population expansion from as early as 3 weeks of age. Mechanistically, PTPN22 mediates cDC2 homeostasis in a cell intrinsic manner by restricting cDC2 proliferation. A single nucleotide polymorphism, PTPN22R620W, is one of the strongest genetic risk factors for multiple autoantibody associated human autoimmune diseases. We demonstrate that cDC2 are also expanded in mice carrying the orthologous PTPN22619W mutation. As a consequence, cDC2 dependent CD4+ T cell proliferation and T follicular helper cell responses are increased. Collectively, our data demonstrate that PTPN22 controls cDC2 homeostasis, which in turn ensures appropriate cDC2-dependent T cell responses under antigenic challenge. Our findings provide a link between perturbations in DC development and susceptibility to a broad spectrum of PTPN22R620W associated human autoimmune diseases
    corecore