1,327 research outputs found
Statistical correlation analysis for comparing vibration data from test and analysis
A theory was developed to compare vibration modes obtained by NASTRAN analysis with those obtained experimentally. Because many more analytical modes can be obtained than experimental modes, the analytical set was treated as expansion functions for putting both sources in comparative form. The dimensional symmetry was developed for three general cases: nonsymmetric whole model compared with a nonsymmetric whole structural test, symmetric analytical portion compared with a symmetric experimental portion, and analytical symmetric portion with a whole experimental test. The theory was coded and a statistical correlation program was installed as a utility. The theory is established with small classical structures
Design and implementation of a compliant robot with force feedback and strategy planning software
Force-feedback robotics techniques are being developed for automated precision assembly and servicing of NASA space flight equipment. Design and implementation of a prototype robot which provides compliance and monitors forces is in progress. Computer software to specify assembly steps and makes force feedback adjustments during assembly are coded and tested for three generically different precision mating problems. A model program demonstrates that a suitably autonomous robot can plan its own strategy
Statistical correlation of structural mode shapes from test measurements and NASTRAN analytical values
The software and procedures of a system of programs used to generate a report of the statistical correlation between NASTRAN modal analysis results and physical tests results from modal surveys are described. Topics discussed include: a mathematical description of statistical correlation, a user's guide for generating a statistical correlation report, a programmer's guide describing the organization and functions of individual programs leading to a statistical correlation report, and a set of examples including complete listings of programs, and input and output data
A new neurosurgical tool incorporating differential geometry and cellular automata techniques
Using optical coherence imaging, it is possible to visualize seizure progression intraoperatively. However, it is difficult to pinpoint an exact epileptic focus. This is crucial in attempts to minimize the amount of resection necessary during surgical therapeutic interventions for epilepsy and is typically done approximately from visual inspection of optical coherence imaging stills. In this paper, we create an algorithm with the potential to pinpoint the source of a seizure from an optical coherence imaging still. To accomplish this, a grid is overlaid on optical coherence imaging stills. This then serves as a grid for a two-dimensional cellular automation. Each cell is associated with a Riemannian curvature tensor representing the curvature of the brain's surface in all directions for a cell. Cells which overlay portions of the image which show neurons that are firing are considered "depolarized"
Robust and inexpensive equipment design for polymerase chain reaction detection of sequence mutations Cystic fibrosis in a mother and 2 children analysed
Every polymerase chain reaction (PCR) requires use of a temperature cycler for about 3 hours. Since there are many diagnostic tests using this technology, it is important that robust but inexpensive machinery is available. Such a standalone machine has been designed and used to analyse an interesting family in which another and her 2 children were diagnosed as having cystic fibrosis
Recommended from our members
A conceptual framework for studying collective reactions to events in location-based social media
Events are a core concept of spatial information, but location-based social media (LBSM) provide information on reactions to events. Individuals have varied degrees of agency in initiating, reacting to or modifying the course of events, and reactions include observations of occurrence, expressions containing sentiment or emotions, or a call to action. Key characteristics of reactions include referent events and information about who reacted, when, where and how. Collective reactions are composed of multiple individual reactions sharing common referents. They can be characterized according to the following dimensions: spatial, temporal, social, thematic and interlinkage. We present a conceptual framework, which allows characterization and comparison of collective reactions. For a thematically well-defined class of event such as storms, we can explore differences and similarities in collective attribution of meaning across space and time. Other events may have very complex spatio-temporal signatures (e.g. political processes such as Brexit or elections), which can be decomposed into series of individual events (e.g. a temporal window around the result of a vote). The purpose of our framework is to explore ways in which collective reactions to events in LBSM can be described and underpin the development of methods for analysing and understanding collective reactions to events
The genetic and environmental hierarchical structure of anxiety and depression in the UK Biobank
Background. Anxiety and depressive disorders can be classified under a bi-dimensional model, where depression and generalized anxiety disorder are represented by distress and the other anxiety disorders, by fear. The phenotypic structure of this model has been validated, but twin studies only show partial evidence for genetic and environmental distinctions between distress and fear. Moreover, the effects of genetic variants are mostly shared between anxiety and depression, but the genome-wide genetic distinction between distress and fear remain unexplored. This study aimed to examine the degree of common genetic variation overlap between distress and fear, and their associations with the psychosocial risk factors of loneliness and social isolation. Methods. We used genome-wide data from 157,366 individuals in the UK Biobank who answered a mental health questionnaire. Results. Genetic correlations indicated that depression and generalized anxiety had a substantial genetic overlap, and that they were genetically partially distinct from fear disorders. Associations with loneliness, but not social isolation, showed that loneliness was more strongly associated with both distress disorders than with fear. Conclusions. Our findings shed light on genetic and environmental mechanisms that are common and unique to distress and fear and contribute to current knowledge on individuals’ susceptibility to anxiety and depression
Measurable, Nonleavable Gambling Problems
1 online resource (PDF, 22 pages
- …