23 research outputs found

    New insight into the formation of structural defects in poly(vinyl chloride)

    Get PDF
    The monomer conversion dependence of the formation of the various types of defect structures in radical suspension polymerization of vinyl chloride was examined via both H-1 and C-13 NMR spectrometry. The rate coefficients for model propagation and intra- and intermolecular hydrogen abstraction reactions were obtained via high-level ab initio molecular orbital calculations. An enormous increase in the formation of both branched and internal unsaturated structures was observed at conversions above 85%, and this is mirrored by a sudden decrease in stability of the resulting PVC polymer. Above this threshold-conversion, the monomer is depleted from the polymer-rich phase, and the propagation rate is thus substantially reduced, thereby allowing the chain-transfer processes to compete more effectively. In contrast to the other defects, the chloroallylic end groups were found to decrease at high conversions. On the basis of the theoretical and experimental data obtained in this study, this decrease was attributed to copolymerization and abstraction reactions that are expected to be favored at high monomer conversions. Finally, a surprising increase in the concentration of the methyl branches was reported. Although a definitive explanation for this behavior is yet to be obtained, the involvement of transfer reactions of an intra- or intermolecular nature seems likely, and (in the latter case) these could lead to the presence of tertiary chlorine in these defects

    New Insight into the Formation of Structural Defects in Poly(Vinyl Chloride)

    No full text
    The monomer conversion dependence of the formation of the various types of defect structures in radical suspension polymerization of vinyl chloride was examined via both 1H and 13C NMR spectrometry. The rate coefficients for model propagation and intra- and intermolecular hydrogen abstraction reactions were obtained via high-level ab initio molecular orbital calculations. An enormous increase in the formation of both branched and internal unsaturated structures was observed at conversions above 85%, and this is mirrored by a sudden decrease in stability of the resulting PVC polymer. Above this threshold-conversion, the monomer is depleted from the polymer-rich phase, and the propagation rate is thus substantially reduced, thereby allowing the chain-transfer processes to compete more effectively. In contrast to the other defects, the chloroallylic end groups were found to decrease at high conversions. On the basis of the theoretical and experimental data obtained in this study, this decrease was attributed to copolymerization and abstraction reactions that are expected to be favored at high monomer conversions. Finally, a surprising increase in the concentration of the methyl branches was reported. Although a definitive explanation for this behavior is yet to be obtained, the involvement of transfer reactions of an intra- or intermolecular nature seems likely, and (in the latter case) these could lead to the presence of tertiary chlorine in these defects.

    Composition mapping of highly substituted cellulose-ether monomers by liquid chromatography–mass spectrometry and probability-based data deconvolution

    No full text
    Cellulose ethers (CEs) are semi-synthetic polymers produced by derivatization of natural cellulose, yielding highly substituted products such as ethyl hydroxyethyl cellulose (EHEC) or methyl ethyl hydroxyethyl cellulose (MEHEC). CEs are commonly applied as pharmaceutical excipients and thickening agents in paints and drymix mortars. CE properties, such as high viscosity in solution, solubility, and bio-stability are of high interest to achieve required product qualities, which may be strongly affected by the substitution pattern obtained after derivatization. The average and molar degree of substitution often cannot explain functional differences observed among CE batches, and more in-depth analysis is needed. In this work, a new method was developed for the comprehensive mapping of the substitution degree and composition of β-glucose monomers of CE samples. To this end, CEs were acid-hydrolyzed and then analyzed by gradient reversed-phase liquid chromatography-mass spectrometry (LC-MS) using an acid-stable LC column and time-of-flight (TOF) mass spectrometer. LC-MS provided monomer resolution based on ethylene oxide, hydroxyl, and terminating methyl/ethyl content, allowing the assignment of detailed compositional distributions. An essential further distinction of constitutional isomer distributions was achieved using an in-house developed probability-based deconvolution algorithm. Aided by differential heat maps for visualization and straightforward interpretation of the measured LC-MS data, compositional variation between bio-stable and non-bio-stable CEs could be identified using this new approach. Moreover, it disclosed unexpected methylations in EHEC samples. Overall, the obtained molecular information on relevant CE samples demonstrated the method's potential for the study of CE structure-property relationships.</p

    Quantitative assessment of polymer molecular shape based on changes in the slope of the Mark-Houwink plot derived from size-exclusion chromatography with triple detection

    Get PDF
    A new approach is presented for gaining additional insights from the molecular weight distribution and intrinsic viscosity of polymers as obtained using size-exclusion chromatography in combination with refractive index, viscometry, and multiangle light scattering detectors. The approach allows for a more quantitative interpretation of the Mark-Houwink plot by assessing the variation of the slope as a function of molecular weight. No prior information on the inter- and intramolecular interactions of the polymer is needed. The proposed curvature parameter can be correlated to the structural and chemical properties (e.g., branching, composition, randomness) of the polymer. The influence of the covered molecular weight interval and the sample concentration on the precision of the method was studied. This new workflow can be utilized to assess the effect of the solvent system and conditions on the solvation behavior of polymers. To evaluate the applicability of the workflow, three case studies have been performed, including an analysis of ethylene-propylene-diene monomer, cellulose ether, and polyamide-4,10 samples. In addition, an open-access tool is provided, to aid polymer researchers in incorporating this approach in their work. The developed method can be used to quickly investigate whether an industrial polymer batch contains unwanted branched species or exhibits particular solvation behavior

    Living with breakthrough:Two-dimensional liquid-chromatography separations of a water-soluble synthetically grafted bio-polymer

    Get PDF
    In this study, we evaluate the use of various two-dimensional liquid chromatographic methods to characterize water-soluble, synthetically grafted bio-polymers, consisting of long poly(acrylic acid) chains and short maltodextrin grafts. The confirmation of the presence of grafting and the estimation of its extent is challenging. It is complicated by the limited solubility of polymers, their structural dispersity and chemical heterogeneity. Moreover, the starting materials (and other reagents, reaction products and additives) may be present in the product. Reversed-phase liquid chromatography (RPLC), hydrophilic-interaction liquid chromatography (HILIC) and size-exclusion chromatography (SEC) were used to characterize the product, as well as the starting materials. Additionally, fractions were collected for off-line characterization by infrared spectroscopy and mass spectrometry. The one-dimensional separation methods were found to be inconclusive regarding the grafting question. Breakthrough (the early elution of polymer fractions due to strong injection solvents) is shown to be a perpetual problem. This issue is not solved by comprehensive two-dimensional liquid chromatography (LC × LC), but information demonstrating the success of the grafting reaction could be obtained. SEC × RPLC and HILIC × RPLC separations are presented and discussed

    Composition mapping of highly substituted cellulose-ether monomers by liquid chromatography–mass spectrometry and probability-based data deconvolution

    No full text
    Cellulose ethers (CEs) are semi-synthetic polymers produced by derivatization of natural cellulose, yielding highly substituted products such as ethyl hydroxyethyl cellulose (EHEC) or methyl ethyl hydroxyethyl cellulose (MEHEC). CEs are commonly applied as pharmaceutical excipients and thickening agents in paints and drymix mortars. CE properties, such as high viscosity in solution, solubility, and bio-stability are of high interest to achieve required product qualities, which may be strongly affected by the substitution pattern obtained after derivatization. The average and molar degree of substitution often cannot explain functional differences observed among CE batches, and more in-depth analysis is needed. In this work, a new method was developed for the comprehensive mapping of the substitution degree and composition of β-glucose monomers of CE samples. To this end, CEs were acid-hydrolyzed and then analyzed by gradient reversed-phase liquid chromatography-mass spectrometry (LC-MS) using an acid-stable LC column and time-of-flight (TOF) mass spectrometer. LC-MS provided monomer resolution based on ethylene oxide, hydroxyl, and terminating methyl/ethyl content, allowing the assignment of detailed compositional distributions. An essential further distinction of constitutional isomer distributions was achieved using an in-house developed probability-based deconvolution algorithm. Aided by differential heat maps for visualization and straightforward interpretation of the measured LC-MS data, compositional variation between bio-stable and non-bio-stable CEs could be identified using this new approach. Moreover, it disclosed unexpected methylations in EHEC samples. Overall, the obtained molecular information on relevant CE samples demonstrated the method's potential for the study of CE structure-property relationships
    corecore