11 research outputs found
Clinically relevant potential drug-drug interactions in intensive care patients:A large retrospective observational multicenter study
Purpose: Potential drug-drug interactions (pDDIs) may harm patients admitted to the Intensive Care Unit (ICU). Due to the patient's critical condition and continuous monitoring on the ICU, not all pDDIs are clinically relevant. Clinical decision support systems (CDSSs) warning for irrelevant pDDIs could result in alert fatigue and overlooking important signals. Therefore, our aim was to describe the frequency of clinically relevant pDDIs (crpDDIs) to enable tailoring of CDSSs to the ICU setting. Materials & methods: In this multicenter retrospective observational study, we used medication administration data to identify pDDIs in ICU admissions from 13 ICUs. Clinical relevance was based on a Delphi study in which intensivists and hospital pharmacists assessed the clinical relevance of pDDIs for the ICU setting. Results: The mean number of pDDIs per 1000 medication administrations was 70.1, dropping to 31.0 when considering only crpDDIs. Of 103,871 ICU patients, 38% was exposed to a crpDDI. The most frequently occurring crpDDIs involve QT-prolonging agents, digoxin, or NSAIDs. Conclusions: Considering clinical relevance of pDDIs in the ICU setting is important, as only half of the detected pDDIs were crpDDIs. Therefore, tailoring CDSSs to the ICU may reduce alert fatigue and improve medication safety in ICU patients
Disappearance of epilepsy after resection of catecholamine secreting extra-adrenal paragangliomas: a case report
Diabetes mellitus: pathophysiological changes and therap
Population pharmacokinetics of ceftriaxone administered as continuous or intermittent infusion in critically ill patients
OBJECTIVES: To describe the population pharmacokinetics and protein-binding characteristics of unbound ceftriaxone administered as continuous or intermittent infusion. Additionally, to determine the optimal dosing regimen in critically ill patients. METHODS: A pharmacokinetic study was performed in the ICU of a tertiary teaching hospital. Patients were treated with ceftriaxone as continuous or intermittent infusion. A population pharmacokinetic model was developed with non-linear mixed-effects analysis. Subsequently, the PTA of a 100% T>MIC was assessed for influential patient characteristics using Monte Carlo simulation. RESULTS: Fifty-five patients were included. The pharmacokinetics of ceftriaxone was best described by a one-compartment model with non-linear saturable protein binding including the following covariates: body weight, estimated CLCR, serum albumin concentration and mode of administration. For pathogens with an MIC of 1 mg/L, the simulation demonstrated that intermittent infusion of 2 g/24 h only resulted in a ≥90% PTA in patients with a reduced CLCR (0-60 mL/min). Intermittent infusion of 2 g/12 h led to sufficient exposure if CLCR was 0-90 mL/min and continuous infusion of 2 g/24 h led to a ≥90% PTA in all simulations (CLCR 0-180 mL/min). CONCLUSIONS: In the critically ill, the clearance of unbound ceftriaxone is closely related to CLCR. Furthermore, ceftriaxone protein binding is saturable, variable and dependent on serum albumin concentration. Intermittent dosing of 2 g/24 h ceftriaxone leads to subtherapeutic exposure in patients with a normal or increased CLCR. Treating these patients with continuous infusion of 2 g/24 h is more effective than an intermittent dosing regimen of 2 g/12 h
Antibiotic-Induced Within-Host Resistance Development of Gram-Negative Bacteria in Patients Receiving Selective Decontamination or Standard Care
Perioperative Medicine: Efficacy, Safety and Outcom
RELAx - REstricted versus Liberal positive end-expiratory pressure in patients without ARDS: protocol for a randomized controlled trial
Background Evidence for benefit of high positive end-expiratory pressure (PEEP) is largely lacking for invasively ventilated, critically ill patients with uninjured lungs. We hypothesize that ventilation with low PEEP is noninferior to ventilation with high PEEP with regard to the number of ventilator-free days and being alive at day 28 in this population. Methods/Design The “REstricted versus Liberal positive end-expiratory pressure in patients without ARDS” trial (RELAx) is a national, multicenter, randomized controlled, noninferiority trial in adult intensive care unit (ICU) patients with uninjured lungs who are expected not to be extubated within 24 h. RELAx will run in 13 ICUs in the Netherlands to enroll 980 patients under invasive ventilation. In all patients, low tidal volumes are used. Patients assigned to ventilation with low PEEP will receive the lowest possible PEEP between 0 and 5 cm H2O, while patients assigned to ventilation with high PEEP will receive PEEP of 8 cm H2O. The primary endpoint is the number of ventilator-free days and being alive at day 28, a composite endpoint for liberation from the ventilator and mortality until day 28, with a noninferiority margin for a difference between groups of 0.5 days. Secondary endpoints are length of stay (LOS), mortality, and occurrence of pulmonary complications, including severe hypoxemia, major atelectasis, need for rescue therapies, pneumonia, pneumothorax, and development of acute respiratory distress syndrome (ARDS). Hemodynamic support and sedation needs will be collected and compared. Discussion RELAx will be the first sufficiently sized randomized controlled trial in invasively ventilated, critically ill patients with uninjured lungs using a clinically relevant and objective endpoint to determine whether invasive, low-tidal-volume ventilation with low PEEP is noninferior to ventilation with high PEEP.</p
Effects of Decontamination of the Oropharynx and Intestinal Tract on Antibiotic Resistance in ICUs: A Randomized Clinical Trial
IMPORTANCE\nSelective decontamination of the digestive tract (SDD) and selective oropharyngeal decontamination (SOD) are prophylactic antibiotic regimens used in intensive care units (ICUs) and associated with improved patient outcome. Controversy exists regarding the relative effects of both measures on patient outcome and antibiotic resistance.\nOBJECTIVE\nTo compare the effects of SDD and SOD, applied as unit-wide interventions, on antibiotic resistance and patient outcome.\nDESIGN, SETTING, AND PARTICIPANTS\nPragmatic, cluster randomized crossover trial comparing 12 months of SOD with 12 months of SDD in 16 Dutch ICUs between August 1, 2009, and February 1, 2013. Patients with an expected length of ICU stay longer than 48 hours were eligible to receive the regimens, and 5881 and 6116 patients were included in the clinical outcome analysis for SOD and SDD, respectively.\nINTERVENTIONS\nIntensive care units were randomized to administer either SDD or SOD.\nMAIN OUTCOMES AND MEASURES\nUnit-wide prevalence of antibiotic-resistant gram-negative bacteria. Secondary outcomes were day-28 mortality, ICU-acquired bacteremia, and length of ICU stay.\nRESULTS\nIn point-prevalence surveys, prevalences of antibiotic-resistant gram-negative bacteria in perianal swabs were significantly lower during SDD compared with SOD; for aminoglycoside resistance, average prevalence was 5.6% (95% CI, 4.6%-6.7%) during SDD and 11.8% (95% CI, 10.3%-13.2%) during SOD (P < .001). During both interventions the prevalence of rectal carriage of aminoglycoside-resistant gram-negative bacteria increased 7% per month (95% CI, 1%-13%) during SDD (P = .02) and 4% per month (95% CI, 0%-8%) during SOD (P = .046; P = .40 for difference). Day 28-mortality was 25.4% and 24.1% during SOD and SDD, respectively (adjusted odds ratio, 0.96 [95% CI, 0.88-1.06]; P = .42), and there were no statistically significant differences in other outcome parameters or between surgical and nonsurgical patients. Intensive care unit-acquired bacteremia occurred in 5.9% and 4.6% of the patients during SOD and SDD, respectively (odds ratio, 0.77 [95% CI, 0.65-0.91]; P = .002; number needed to treat, 77).\nCONCLUSIONS AND RELEVANCE\nUnit-wide application of SDD and SOD was associated with low levels of antibiotic resistance and no differences in day-28 mortality. Compared with SOD, SDD was associated with lower rectal carriage of antibiotic-resistant gram-negative bacteria and ICU-acquired bacteremia but a more pronounced gradual increase in aminoglycoside-resistant gram-negative bacteria.\nTRIAL REGISTRATION\ntrialregister.nlIdentifier: NTR1780.Perioperative Medicine: Efficacy, Safety and Outcom
Longitudinal respiratory subphenotypes in patients with COVID-19-related acute respiratory distress syndrome: results from three observational cohorts
Background: Patients with COVID-19-related acute respiratory distress syndrome (ARDS) have been postulated to present with distinct respiratory subphenotypes. However, most phenotyping schema have been limited by sample size, disregard for temporal dynamics, and insufficient validation. We aimed to identify respiratory subphenotypes of COVID-19-related ARDS using unbiased data-driven approaches. Methods: PRoVENT–COVID was an investigator-initiated, national, multicentre, prospective, observational cohort study at 22 intensive care units (ICUs) in the Netherlands. Consecutive patients who had received invasive mechanical ventilation for COVID-19 (aged 18 years or older) served as the derivation cohort, and similar patients from two ICUs in the USA served as the replication cohorts. COVID-19 was confirmed by positive RT-PCR. We used latent class analysis to identify subphenotypes using clinically available respiratory data cross-sectionally at baseline, and longitudinally using 8-hourly data from the first 4 days of invasive ventilation. We used group-based trajectory modelling to evaluate trajectories of individual variables and to facilitate potential clinical translation. The PRoVENT-COVID study is registered with ClinicalTrials.gov, NCT04346342. Findings: Between March 1, 2020, and May 15, 2020, 1007 patients were admitted to participating ICUs in the Netherlands, and included in the derivation cohort. Data for 288 patients were included in replication cohort 1 and 326 in replication cohort 2. Cross-sectional latent class analysis did not identify any underlying subphenotypes. Longitudinal latent class analysis identified two distinct subphenotypes. Subphenotype 2 was characterised by higher mechanical power, minute ventilation, and ventilatory ratio over the first 4 days of invasive mechanical ventilation than subphenotype 1, but PaO2/FiO2, pH, and compliance of the respiratory system did not differ between the two subphenotypes. 185 (28%) of 671 patients with subphenotype 1 and 109 (32%) of 336 patients with subphenotype 2 had died at day 28 (p=0·10). However, patients with subphenotype 2 had fewer ventilator-free days at day 28 (median 0, IQR 0–15 vs 5, 0–17; p=0·016) and more frequent venous thrombotic events (109 [32%] of 336 patients vs 176 [26%] of 671 patients; p=0·048) compared with subphenotype 1. Group-based trajectory modelling revealed trajectories of ventilatory ratio and mechanical power with similar dynamics to those observed in latent class analysis-derived trajectory subphenotypes. The two trajectories were: a stable value for ventilatory ratio or mechanical power over the first 4 days of invasive mechanical ventilation (trajectory A) or an upward trajectory (trajectory B). However, upward trajectories were better independent prognosticators for 28-day mortality (OR 1·64, 95% CI 1·17–2·29 for ventilatory ratio; 1·82, 1·24–2·66 for mechanical power). The association between upward ventilatory ratio trajectories (trajectory B) and 28-day mortality was confirmed in the replication cohorts (OR 4·65, 95% CI 1·87–11·6 for ventilatory ratio in replication cohort 1; 1·89, 1·05–3·37 for ventilatory ratio in replication cohort 2). Interpretation: At baseline, COVID-19-related ARDS has no consistent respiratory subphenotype. Patients diverged from a fairly homogenous to a more heterogeneous population, with trajectories of ventilatory ratio and mechanical power being the most discriminatory. Modelling these parameters alone provided prognostic value for duration of mechanical ventilation and mortality. Funding: Amsterdam UMC
Ventilation management and clinical outcomes in invasively ventilated patients with COVID-19 (PRoVENT-COVID): a national, multicentre, observational cohort study
Background: Little is known about the practice of ventilation management in patients with COVID-19. We aimed to describe the practice of ventilation management and to establish outcomes in invasively ventilated patients with COVID-19 in a single country during the first month of the outbreak. Methods: PRoVENT-COVID is a national, multicentre, retrospective observational study done at 18 intensive care units (ICUs) in the Netherlands. Consecutive patients aged at least 18 years were eligible for participation if they had received invasive ventilation for COVID-19 at a participating ICU during the first month of the national outbreak in the Netherlands. The primary outcome was a combination of ventilator variables and parameters over the first 4 calendar days of ventilation: tidal volume, positive end-expiratory pressure (PEEP), respiratory system compliance, and driving pressure. Secondary outcomes included the use of adjunctive treatments for refractory hypoxaemia and ICU complications. Patient-centred outcomes were ventilator-free days at day 28, duration of ventilation, duration of ICU and hospital stay, and mortality. PRoVENT-COVID is registered at ClinicalTrials.gov (NCT04346342). Findings: Between March 1 and April 1, 2020, 553 patients were included in the study. Median tidal volume was 6·3 mL/kg predicted bodyweight (IQR 5·7–7·1), PEEP was 14·0 cm H2O (IQR 11·0–15·0), and driving pressure was 14·0 cm H2O (11·2–16·0). Median respiratory system compliance was 31·9 mL/cm H2O (26·0–39·9). Of the adjunctive treatments for refractory hypoxaemia, prone positioning was most often used in the first 4 days of ventilation (283 [53%] of 530 patients). The median number of ventilator-free days at day 28 was 0 (IQR 0–15); 186 (35%) of 530 patients had died by day 28. Predictors of 28-day mortality were gender, age, tidal volume, respiratory system compliance, arterial pH, and heart rate on the first day of invasive ventilation. Interpretation: In patients with COVID-19 who were invasively ventilated during the first month of the outbreak in the Netherlands, lung-protective ventilation with low tidal volume and low driving pressure was broadly applied and prone positioning was often used. The applied PEEP varied widely, despite an invariably low respiratory system compliance. The findings of this national study provide a basis for new hypotheses and sample size calculations for future trials of invasive ventilation for COVID-19. These data could also help in the interpretation of findings from other studies of ventilation practice and outcomes in invasively ventilated patients with COVID-19. Funding: Amsterdam University Medical Centers, location Academic Medical Center