57 research outputs found
Quantification of the Dental Morphology of Orangutans
Orangutans are believed to have close biological affinities to humans. Teeth being the hardest tissue provide useful information on primate evolution. Furthermore, knowledge of the pulp chamber and root canal morphology is important for dental treatment. A female Bornean orangutan and a Sumatran male orangutan skull were available for this study. Both of their dentitions, comprising 50 teeth, were scanned employing the cone-beam computed tomography for both metrical and nonmetrical analyses. Measurements included tooth and crown length, root length, enamel covered crown height, root canal length (posterior teeth), length of pulpal space (anterior teeth), and root canal width. Nonmetrical parameters included number of canals per root, number of foramina in each root, and root canal morphology according to Vertucci’s classification. It was found that the enamel covered crown height was the longest in the upper central incisors although the canine was the longest amongst the anterior teeth. Both the upper premolars were three-rooted while the lower second premolar of the Sumatran orangutan was two-rooted, with two foramina. The mandibular lateral incisors of the Bornean orangutan were longer than the central incisors, a feature similar to humans. In addition, secondary dentine deposition was noticed, a feature consistent with aged humans
Curaxin CBL0100 Blocks HIV-1 Replication and Reactivation through Inhibition of Viral Transcriptional Elongation
Despite combination antiretroviral therapy (cART), acquired immunodeficiency syndrome (AIDS), predominantly caused by the human immunodeficiency virus type 1 (HIV-1), remains incurable. The barrier to a cure lies in the virus' ability to establish a latent infection in HIV/AIDS patients. Unsurprisingly, efforts for a sterilizing cure have focused on the “shock and kill” strategy using latency-reversing agents (LRAs) to complement cART in order to eliminate these latent reservoirs. However, this method faces numerous challenges. Recently, the “block and lock” strategy has been proposed. It aims to reinforce a deep state of latency and prevent sporadic reactivation (“blip”) of HIV-1 using latency-promoting agents (LPAs) for a functional cure. Our studies of curaxin 100 (CBL0100), a small-molecule targeting the facilitates chromatin transcription (FACT) complex, show that it blocks both HIV-1 replication and reactivation in in vitro and ex vivo models of HIV-1. Mechanistic investigation elucidated that CBL0100 preferentially targets HIV-1 transcriptional elongation and decreases the occupancy of RNA Polymerase II (Pol II) and FACT at the HIV-1 promoter region. In conclusion, CBL0100 is a newly identified inhibitor of HIV-1 transcription that can be used as an LPA in the “block and lock” cure strategy
- …