29 research outputs found

    Pex7p and Pex20p of Neurospora crassa Function Together in PTS2-dependent Protein Import into Peroxisomes

    No full text
    Recruiting matrix proteins with a peroxisomal targeting signal type 2 (PTS2) to the peroxisomal membrane requires species-specific factors. In Saccharomyces cerevisiae, the PTS2 receptor Pex7p acts in concert with the redundant Pex18p/Pex21p, whereas in Yarrowia lipolytica, Pex20p might unite the function of both S. cerevisiae peroxins. Herein, the genome of the filamentous fungus Neurospora crassa was analyzed for peroxin-encoding genes. We identified a set of 18 peroxins that resembles that of Y. lipolytica rather than that of S. cerevisiae. Interestingly, proteins homologous to both S. cerevisiae Pex7p and Y. lipolytica Pex20p exist in N. crassa. We report on the isolation of these PTS2-specific peroxins and demonstrate that NcPex20p can substitute for S. cerevisiae Pex18p/Pex21p, but not for ScPex7p. Like Pex18p, NcPex20p did not bind PTS2 protein or the docking proteins in the absence of ScPex7p. Rather, NcPex20p was required before docking to form an import-competent complex of cargo-loaded PTS2 receptors. NcPex7p did not functionally replace yeast Pex7p, probably because the N. crassa PTS2 receptor failed to associate with Pex18p/Pex21p. However, once NcPex7p and NcPex20p had been coexpressed, it proved possible to replace yeast Pex7p. Pex20p and Pex18p/Pex21p are therefore true orthologues, both of which are in need of Pex7p for PTS2 protein import

    Peroxisome Senescence in Human Fibroblasts

    No full text
    The molecular mechanisms of peroxisome biogenesis have begun to emerge; in contrast, relatively little is known about how the organelle functions as cells age. In this report, we characterize age-related changes in peroxisomes of human cells. We show that aging compromises peroxisomal targeting signal 1 (PTS1) protein import, affecting in particular the critical antioxidant enzyme catalase. The number and appearance of peroxisomes are altered in these cells, and the organelles accumulate the PTS1-import receptor, Pex5p, on their membranes. Concomitantly, cells produce increasing amounts of the toxic metabolite hydrogen peroxide, and we present evidence that this increased load of reactive oxygen species may further reduce peroxisomal protein import and exacerbate the effects of aging
    corecore