63 research outputs found

    Twenty years of geomagnetic field observations at Mario Zucchelli Station (Antarctica)

    Get PDF
    During the 1986-87 austral summer a geomagnetic observatory was installed at Terra Nova Bay. During the first years both geomagnetic field time variation monitoring and absolute measurements were carried out only during summer. Since 1991 variometer measurements are automatically performed during the whole year, while absolute measurements are still performed only during summer. In spite of this, interesting observations were obtained during the life (quite long for Antarctica) of the geomagnetic observatory. In particular in this paper some of the most relevant results are briefly presented: studies about secular variation, daily variation (and its dependence from solar cycle and seasons) and geomagnetic higher frequency variations, such as geomagnetic pulsations

    Identification of Escherichia coli strains from water vending machines of Kelantan, Malaysia using 16S rRNA gene sequence analysis

    Get PDF
    Water vending machines provide an alternative source of clean and safe drinking water to the consumers. However, the quality of drinking water may alter due to contamination from lack of hygienic practices and maintenance of the machines. Hence, this study was conducted to determine the microbiological quality of water from vending machines and associated contact surfaces. Seventeen water samples and 85 swab samples (nozzles, drip trays, coin slots, buttons and doors) from 3 locations in Kelantan were collected. Polymerase chain reaction amplification and 16S ribosomal ribonucleic acid (rRNA) sequencing were carried out and sequences obtained were compared against the sequences available in the National Centre for Biotechnology Information database using the basic local alignment search tool programme. Coliform counts were observed in 94.12 % of water samples, 76.47 % of nozzles and 82.35 % of drip tray swabs. Furthermore, results of 16S rRNA sequence analysis indicated that two gram-negative isolates were identified as Escherichia coli U 5/41 (Accession no. NR_024570.1) and E. coli O157:H7 EDL933 (Accession no. CP008957.1) with similarity value of 100 %, respectively. The results from this study further improve our understanding of the potential microorganisms in drinking water. Regular maintenance and cleaning of water vending machines are important to reduce bacterial growth and the presence of waterborne pathogens

    MOSAIC: an online database dedicated to the comparative genomics of bacterial strains at the intra-species level

    Get PDF
    BACKGROUND: The recent availability of complete sequences for numerous closely related bacterial genomes opens up new challenges in comparative genomics. Several methods have been developed to align complete genomes at the nucleotide level but their use and the biological interpretation of results are not straightforward. It is therefore necessary to develop new resources to access, analyze, and visualize genome comparisons. DESCRIPTION: Here we present recent developments on MOSAIC, a generalist comparative bacterial genome database. This database provides the bacteriologist community with easy access to comparisons of complete bacterial genomes at the intra-species level. The strategy we developed for comparison allows us to define two types of regions in bacterial genomes: backbone segments (i.e., regions conserved in all compared strains) and variable segments (i.e., regions that are either specific to or variable in one of the aligned genomes). Definition of these segments at the nucleotide level allows precise comparative and evolutionary analyses of both coding and non-coding regions of bacterial genomes. Such work is easily performed using the MOSAIC Web interface, which allows browsing and graphical visualization of genome comparisons. CONCLUSION: The MOSAIC database now includes 493 pairwise comparisons and 35 multiple maximal comparisons representing 78 bacterial species. Genome conserved regions (backbones) and variable segments are presented in various formats for further analysis. A graphical interface allows visualization of aligned genomes and functional annotations. The MOSAIC database is available online at http://genome.jouy.inra.fr/mosaic

    Characterization and Comparison of 2 Distinct Epidemic Community-Associated Methicillin-Resistant Staphylococcus aureus Clones of ST59 Lineage.

    Get PDF
    Sequence type (ST) 59 is an epidemic lineage of community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) isolates. Taiwanese CA-MRSA isolates belong to ST59 and can be grouped into 2 distinct clones, a virulent Taiwan clone and a commensal Asian-Pacific clone. The Taiwan clone carries the Panton-Valentine leukocidin (PVL) genes and the staphylococcal chromosomal cassette mec (SCCmec) VT, and is frequently isolated from patients with severe disease. The Asian-Pacific clone is PVL-negative, carries SCCmec IV, and a frequent colonizer of healthy children. Isolates of both clones were characterized by their ability to adhere to respiratory A549 cells, cytotoxicity to human neutrophils, and nasal colonization of a murine and murine sepsis models. Genome variation was determined by polymerase chain reaction of selected virulence factors and by multi-strain whole genome microarray. Additionally, the expression of selected factors was compared between the 2 clones. The Taiwan clone showed a much higher cytotoxicity to the human neutrophils and caused more severe septic infections with a high mortality rate in the murine model. The clones were indistinguishable in their adhesion to A549 cells and persistence of murine nasal colonization. The microarray data revealed that the Taiwan clone had lost the ø3-prophage that integrates into the β-hemolysin gene and includes staphylokinase- and enterotoxin P-encoding genes, but had retained the genes for human immune evasion, scn and chps. Production of the virulence factors did not differ significantly in the 2 clonal groups, although more α-toxin was expressed in Taiwan clone isolates from pneumonia patients. In conclusion, the Taiwan CA-MRSA clone was distinguished by enhanced virulence in both humans and an animal infection model. The evolutionary acquisition of PVL, the higher expression of α-toxin, and possibly the loss of a large portion of the β-hemolysin-converting prophage likely contribute to its higher pathogenic potential than the Asian-Pacific clone

    Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe

    Get PDF
    Shigella are human-adapted Escherichia coli that have gained the ability to invade the human gut mucosa and cause dysentery1,2, spreading efficiently via low-dose fecal-oral transmission3,4. Historically, S. sonnei has been predominantly responsible for dysentery in developed countries, but is now emerging as a problem in the developing world, apparently replacing the more diverse S. flexneri in areas undergoing economic development and improvements in water quality4-6. Classical approaches have shown S. sonnei is genetically conserved and clonal7. We report here whole-genome sequencing of 132 globally-distributed isolates. Our phylogenetic analysis shows that the current S. sonnei population descends from a common ancestor that existed less than 500 years ago and has diversified into several distinct lineages with unique characteristics. Our analysis suggests the majority of this diversification occurred in Europe, followed by more recent establishment of local pathogen populations in other continents predominantly due to the pandemic spread of a single, rapidly-evolving, multidrug resistant lineage

    Microevolution of Helicobacter pylori during prolonged infection of single hosts and within families

    Get PDF
    Our understanding of basic evolutionary processes in bacteria is still very limited. For example, multiple recent dating estimates are based on a universal inter-species molecular clock rate, but that rate was calibrated using estimates of geological dates that are no longer accepted. We therefore estimated the short-term rates of mutation and recombination in Helicobacter pylori by sequencing an average of 39,300 bp in 78 gene fragments from 97 isolates. These isolates included 34 pairs of sequential samples, which were sampled at intervals of 0.25 to 10.2 years. They also included single isolates from 29 individuals (average age: 45 years) from 10 families. The accumulation of sequence diversity increased with time of separation in a clock-like manner in the sequential isolates. We used Approximate Bayesian Computation to estimate the rates of mutation, recombination, mean length of recombination tracts, and average diversity in those tracts. The estimates indicate that the short-term mutation rate is 1.4×10−6 (serial isolates) to 4.5×10−6 (family isolates) per nucleotide per year and that three times as many substitutions are introduced by recombination as by mutation. The long-term mutation rate over millennia is 5–17-fold lower, partly due to the removal of non-synonymous mutations due to purifying selection. Comparisons with the recent literature show that short-term mutation rates vary dramatically in different bacterial species and can span a range of several orders of magnitude

    Mesoscopic model for DNA G-quadruplex unfolding

    Full text link
    [EN] Genomes contain rare guanine-rich sequences capable of assembling into four-stranded helical structures, termed G-quadruplexes, with potential roles in gene regulation and chromosome stability. Their mechanical unfolding has only been reported to date by all-atom simulations, which cannot dissect the major physical interactions responsible for their cohesion. Here, we propose a mesoscopic model to describe both the mechanical and thermal stability of DNA G-quadruplexes, where each nucleotide of the structure, as well as each central cation located at the inner channel, is mapped onto a single bead. In this framework we are able to simulate loading rates similar to the experimental ones, which are not reachable in simulations with atomistic resolution. In this regard, we present single-molecule force-induced unfolding experiments by a high-resolution optical tweezers on a DNA telomeric sequence capable of adopting a G-quadruplex conformation. Fitting the parameters of the model to the experiments we find a correct prediction of the rupture-force kinetics and a good agreement with previous near equilibrium measurements. Since G-quadruplex unfolding dynamics is halfway in complexity between secondary nucleic acids and tertiary protein structures, our model entails a nanoscale paradigm for non-equilibrium processes in the cell.Work supported by the Spanish Ministry of Economy and Competitiveness (MINECO), grant No. FIS2014-55867, co-financed by FEDER funds. We also thank the support of the Aragon Government and Fondo Social Europeo to FENOL group. Work in J.R.A.-G. laboratory was supported by a grant from MINECO, No. MAT2015-71806-R).Bergues-Pupo, A.; Gutiérrez, I.; Arias-Gonzalez, JR.; Falo, F.; Fiasconaro, A. (2017). Mesoscopic model for DNA G-quadruplex unfolding. Scientific Reports. 7:1-13. https://doi.org/10.1038/s41598-017-10849-2S1137Arias-Gonzalez, J. R. Single-molecule portrait of DNA and RNA double helices. Integr. Biol. 6, 904 (2014).Burge, S., Parkinson, G. N., Hazel, P., Todd, A. K. & Neidle, S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 34, 5402 (2006).Lam, E. Y., Beraldi, D., Tannahill, D. & Balasubramanian, S. G-quadruplex structures are stable and detectable in human genomic DNA. Nat. Commun. 4, 1796 (2013).Siddiqui-Jain, A., Grand, C. L., Bearss, D. J. & Hurley, L. H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. USA 99, 11593 (2002).Endoh, T. & Sugimoto, N. Mechanical insights into ribosomal progression overcoming RNA G-quadruplex from periodical translation suppression in cells. Sci. Rep. 6, 1 (2016).Hänsel-Hertsch, R., Di Antonio, M. & Balasubramanian, S. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat. Rev. Mol. Cell Biol. 18, 279 (2017).de Messieres, M., Chang, J. C., Brawn-Cinani, B. & La Porta, A. Single-molecule study of G-quadruplex disruption using dynamic force spectroscopy. Phys. Rev. Lett. 109, 058101 (2012).Koirala, D. et al. A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. Nat. Chem. 3, 782 (2011).Long, X. et al. Mechanical unfolding of human telomere G-quadruplex DNA probed by integrated fluorescence and magnetic tweezers spectroscopy. Nucleic Acids Res. 41, 2746 (2013).Ghimire, C. et al. Direct Quantification of Loop Interaction and pi-pi Stacking for G-Quadruplex Stability at the Submolecular Level. J. Am. Chem. Soc. 136, 15544 (2014).Garavís, M. et al. Mechanical Unfolding of Long Human Telomeric RNA (TERRA). Chem. Commun. 49, 6397 (2013).Fonseca Guerra, C., Zijlstra, H., Paragi, G. & Bickelhaupt, F. M. Telomere structure and stability: covalency in hydrogen bonds, not resonance assistance, causes cooperativity in guanine quartets. Chemistry-A European Journal 17, 12612 (2011).Yurenko, Y. P., Novotn, J., Sklen, V. & Marek, R. Exploring non-covalent interactions in guanine-and xanthine-based model DNA quadruplex structures: a comprehensive quantum chemical approach. Phys. Chem. Chem. Phys. 16, 2072 (2014).Poudel, L. et al. Implication of the solvent effect, metal ions and topology in the electronic structure and hydrogen bonding of human telomeric G-quadruplex DNA. Phys. Chem. Chem. Phys. 18, 21573 (2016).Li, M. H., Luo, Q., Xue, X. G. & Li, Z. S. Toward a full structural characterization of G-quadruplex DNA in aqueous solution: Molecular dynamics simulations of four G-quadruplex molecules. J. Mol. Struct-Theochem. 952, 96 (2010).Islam, B. et al. Conformational dynamics of the human propeller telomeric DNA quadruplex on a microsecond time scale. Nucleic Acids Res. 41, 2723 (2013).Stadlbauer, P., Krepl, M., Cheatham, T. E., Koca, J. & Sponer, J. Structural dynamics of possible late-stage intermediates in folding of quadruplex DNA studied by molecular simulations. Nucleic Acids Res. 41, 7128 (2013).Li, H., Cao, E. & Gisler, T. Force-induced unfolding of human telomeric G-quadruplex: a steered molecular dynamics simulation study. Biochem. Bioph. Res. Co. 379, 70 (2009).Yang, C., Jang, S. & Pak, Y. Multiple stepwise pattern for potential of mean force in unfolding the thrombin binding aptamer in complex with Sr2+. J. Chem. Phys. 135, 225104 (2011).Bergues-Pupo, A. E., Arias-Gonzalez, J. R., Morón, M. C., Fiasconaro, A. & Falo, F. Role of the central cations in the mechanical unfolding of DNA and RNA G-quadruplexes. Nucleic Acids Res. 43, 7638 (2015).Linak, M. C., Tourdot, R. & Dorfman, K. D. Moving beyond Watson-Crick models of coarse grained DNA dynamics. J. Chem Phys. 135, 205102 (2011).Rebi, M., Mocci, F., Laaksonen, A. & Ulin, J. Multiscale simulations of human telomeric G-quadruplex DNA. J. Phys. Chem. B 119, 105 (2014).Stadlbauer, P. et al. Coarse-Grained Simulations Complemented by Atomistic Molecular Dynamics Provide New Insights into Folding and Unfolding of Human Telomeric G-Quadruplexes. J. Chem. Theory Comput. 12, 6077 (2016).Parkinson, G. N., Lee, M. P. & Neidle, S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417, 876 (2002).Bhattacharya, D., Arachchilageand, G. M. & Basu, S. Metal Cations in G-Quadruplex Folding and Stability. Frontiers in Chemistry 4, 38 (2016).de Lorenzo, S., Ribezzi-Crivellari, M., Arias-Gonzalez, J. R., Smith, S. B. & Ritort, F. A Temperature-Jump Optical Trap for Single-Molecule Manipulation. Biophys. J. 108, 2854 (2015).Smith, S. B., Cui, Y. & Bustamante, C. Optical-trap force transducer that operates by direct measurement of light momentum. Methods Enzymol. 361, 134 (2003).Mergny, J. L., Phan, A. T. & Lacroix, L. Following G-quartet formation by UV-spectroscopy. FEBS letters 435, 74 (1998).Torrie, G. M. & Valleau, J. P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23, 187 (1977).Kumar, S., Bouzida, D., Swendsen, R. H., Kollman, P. A. & Rosenberg, J. M. The weighted histogram analysis method for free-energy calculations on biomolecules I. The method. J. Comput. Chem. 13, 1011 (1992).Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541 (1997).Dudko, O. K., Hummer, G. & Szabo, A. Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys. Rev. Lett. 96, 108101 (2006).Friddle, R. W., Noy, A. & De Yoreo, J. J. Interpreting the widespread nonlinear force spectra of intermolecular bonds. Proc. Natl. Acad. Sci. 109, 13573 (2012)

    An Integrated Approach for Finding Overlooked Genes in Shigella

    Get PDF
    Background: The completion of numerous genome sequences introduced an era of whole-genome study. However, many genes are missed during genome annotation, including small RNAs (sRNAs) and small open reading frames (sORFs). In order to improve genome annotation, we aimed to identify novel sRNAs and sORFs in Shigella, the principal etiologic agents of bacillary dysentery. Methodology/Principal Findings: We identified 64 sRNAs in Shigella, which were experimentally validated in other bacteria based on sequence conservation. We employed computer-based and tiling array-based methods to search for sRNAs, followed by RT-PCR and northern blots, to identify nine sRNAs in Shigella flexneri strain 301 (Sf301) and 256 regions containing possible sRNA genes. We found 29 candidate sORFs using bioinformatic prediction, array hybridization and RT-PCR verification. We experimentally validated 557 (57.9%) DOOR operon predictions in the chromosomes of Sf301 and 46 (76.7%) in virulence plasmid.We found 40 additional co-expressed gene pairs that were not predicted by DOOR. Conclusions/Significance: We provide an updated and comprehensive annotation of the Shigella genome. Our study increased the expected numbers of sORFs and sRNAs, which will impact on future functional genomics and proteomics studies. Our method can be used for large scale reannotation of sRNAs and sORFs in any microbe with a known genom
    • …
    corecore