24 research outputs found

    Substrate specificity of the pyrophosphohydrolase LpxH determines the asymmetry of Bordetella pertussis lipid A

    Get PDF
    Lipopolysaccharides are anchored to the outer membrane of Gram-negative bacteria by a hydrophobic moiety known as lipid A, which potently activates the host innate immune response. Lipid A of Bordetella pertussis, the causative agent of whooping cough, displays unusual structural asymmetry with respect to the length of the acyl chains at the 3 and 3′ positions, which are 3OH-C10 and 3OH-C14 chains, respectively. Both chains are attached by the acyltransferase LpxA, the first enzyme in the lipid A biosynthesis pathway, which, in B. pertussis, has limited chain length specificity. However, this only partially explains the strict asymmetry of lipid A. In attempts to modulate the endotoxicity of B. pertussis lipid A, here we expressed the gene encoding LpxA from Neisseria meningitidis, which specifically attaches 3OH-C12 chains, in B. pertussis. This expression was lethal, suggesting that one of the downstream enzymes in the lipid A biosynthesis pathway in B. pertussis cannot handle precursors with a 3OH-C12 chain. We considered that the UDP-diacylglucosamine pyrophosphohydrolase LpxH could be responsible for this defect as well as for the asymmetry of B. pertussis lipid A. Expression of meningococcal LpxH in B. pertussis indeed resulted in new symmetric lipid A species with 3OH-C10 or 3OH-C14 chains at both the 3 and 3′ positions, as revealed by MS analysis. Furthermore, co-expression of meningococcal lpxH and lpxA resulted in viable cells that incorporated 3OH-C12 chains in B. pertussis lipid A. We conclude that the asymmetry of B. pertussis lipid A is determined by the acyl chain length specificity of LpxH

    Activation of canine, mouse and human TLR2 and TLR4 by inactivated Leptospira vaccine strains

    Get PDF
    Canine Leptospira vaccines contain inactivated strains of pathogenic Leptospira, the causative agents of leptospirosis. For an effective response to vaccination, activation of the innate immune system via pattern recognition receptors such as TLRs is crucial. However, it is not known which TLRs are activated by Leptospira in dogs. To investigate the involvement of canine TLR2, TLR4, and TLR5 in the recognition of Leptospira, we stimulated canine moDC and reporter cells expressing canine TLR2 with either wholeinactivated bacteria or purified LPS of Leptospira strains, representing the serogroups generally used in canine leptospirosis vaccines. Using the endotoxin neutralizing reagent polymyxin B and TLR4 antagonist RS-LPS, we demonstrate that Leptospira LPS and canine TLR4 are involved in IL-1b production as well as in the uptake of inactivated Leptospira in canine moDC. Furthermore, polymyxin B only partially inhibited IL-1b production induced by inactivated Leptospira, suggesting that next to TLR4, also other TLRs may be involved. The observed activation of canine TLR2-expressing reporter cells by inactivated Leptospira strains indicates that TLR2 could be one of these TLRs. Next, we analyzed TLR2 and TLR4 activating capabilities by the same Leptospira strains using human and mouse TLR-expressing reporter cells. Inactivated Leptospira and leptospiral LPS activated not only mouse, but also human TLR4 and this activation was shown to be LPS dependent in both cases. Additionally, inactivated Leptospira activated mouse and human TLR2-expressing reporter cell lines. In our study, we could not identify significant species differences in the recognition of Leptospira by TLR2 and TLR4 between dog, human and mouse. Lastly, we show that these inactivated Leptospira strains are recognized by both mouse and human TLR5 reporter cells only after exposure to additional heat-treatment. Unfortunately, we were not able to confirm this in the canine system. Our data show that TLR2 and TLR4 are involved in the recognition of Leptospira strains used in the production of canine Leptospira vaccines. This study contributes to the understanding of Leptospira-induced innate immune responses in dogs, humans, and mice. Future studies are needed to further explore the role of canine TLR2, TLR4 and TLR5 in the induction of vaccine-mediated immunity against Leptospira.The Innovative Medicines Initiative 2 Joint Undertaking.https://www.frontiersin.org/journals/immunologydm2022Veterinary Tropical Disease

    Activation of Canine, Mouse and Human TLR2 and TLR4 by Inactivated Leptospira Vaccine Strains

    Get PDF
    Canine Leptospira vaccines contain inactivated strains of pathogenic Leptospira, the causative agents of leptospirosis. For an effective response to vaccination, activation of the innate immune system via pattern recognition receptors such as TLRs is crucial. However, it is not known which TLRs are activated by Leptospira in dogs. To investigate the involvement of canine TLR2, TLR4, and TLR5 in the recognition of Leptospira, we stimulated canine moDC and reporter cells expressing canine TLR2 with either whole-inactivated bacteria or purified LPS of Leptospira strains, representing the serogroups generally used in canine leptospirosis vaccines. Using the endotoxin neutralizing reagent polymyxin B and TLR4 antagonist RS-LPS, we demonstrate that Leptospira LPS and canine TLR4 are involved in IL-1β production as well as in the uptake of inactivated Leptospira in canine moDC. Furthermore, polymyxin B only partially inhibited IL-1β production induced by inactivated Leptospira, suggesting that next to TLR4, also other TLRs may be involved. The observed activation of canine TLR2-expressing reporter cells by inactivated Leptospira strains indicates that TLR2 could be one of these TLRs. Next, we analyzed TLR2 and TLR4 activating capabilities by the same Leptospira strains using human and mouse TLR-expressing reporter cells. Inactivated Leptospira and leptospiral LPS activated not only mouse, but also human TLR4 and this activation was shown to be LPS dependent in both cases. Additionally, inactivated Leptospira activated mouse and human TLR2-expressing reporter cell lines. In our study, we could not identify significant species differences in the recognition of Leptospira by TLR2 and TLR4 between dog, human and mouse. Lastly, we show that these inactivated Leptospira strains are recognized by both mouse and human TLR5 reporter cells only after exposure to additional heat-treatment. Unfortunately, we were not able to confirm this in the canine system. Our data show that TLR2 and TLR4 are involved in the recognition of Leptospira strains used in the production of canine Leptospira vaccines. This study contributes to the understanding of Leptospira-induced innate immune responses in dogs, humans, and mice. Future studies are needed to further explore the role of canine TLR2, TLR4 and TLR5 in the induction of vaccine-mediated immunity against Leptospira

    Modulating endotoxin activity by combinatorial bioengineering of meningococcal lipopolysaccharide

    No full text
    Neisseria meningitidis contains a very potent hexa-acylated LPS that is too toxic for therapeutic applications. We used systematic molecular bioengineering of meningococcal LPS through deletion of biosynthetic enzymes in combination with induction of LPS modifying enzymes to yield a variety of novel LPS mutants with changes in both lipid A acylation and phosphorylation. Mass spectrometry was used for detailed compositional determination of the LPS molecular species, and stimulation of immune cells was done to correlate this with endotoxic activity. Removal of phosphethanolamine in lipid A by deletion of lptA slightly reduces activity of hexa-acylated LPS, but this reduction is even more evident in penta-acylated LPS. Surprisingly, expression of PagL deacylase in a penta-acylated lpxL1 mutant increased LPS activity, contradicting the general rule that tetra-acylated LPS is less active than penta-acylated LPS. Further modification included expression of lpxP, an enzyme known to add a secondary 9-hexadecenoic acid to the 2' acyl chain. The LpxP enzyme is temperature-sensitive, enabling control over the ratio of expressed modified hexa- and penta-acylated LPS by simply changing the growth temperature. These LPS derivatives display a broad range of TLR4 activity and differential cytokine induction, which can be exploited for use as vaccine adjuvant or other TLR4-based therapeutics

    Activation of Canine, Mouse and Human TLR2 and TLR4 by Inactivated Leptospira Vaccine Strains

    Get PDF
    Canine Leptospira vaccines contain inactivated strains of pathogenic Leptospira, the causative agents of leptospirosis. For an effective response to vaccination, activation of the innate immune system via pattern recognition receptors such as TLRs is crucial. However, it is not known which TLRs are activated by Leptospira in dogs. To investigate the involvement of canine TLR2, TLR4, and TLR5 in the recognition of Leptospira, we stimulated canine moDC and reporter cells expressing canine TLR2 with either whole-inactivated bacteria or purified LPS of Leptospira strains, representing the serogroups generally used in canine leptospirosis vaccines. Using the endotoxin neutralizing reagent polymyxin B and TLR4 antagonist RS-LPS, we demonstrate that Leptospira LPS and canine TLR4 are involved in IL-1β production as well as in the uptake of inactivated Leptospira in canine moDC. Furthermore, polymyxin B only partially inhibited IL-1β production induced by inactivated Leptospira, suggesting that next to TLR4, also other TLRs may be involved. The observed activation of canine TLR2-expressing reporter cells by inactivated Leptospira strains indicates that TLR2 could be one of these TLRs. Next, we analyzed TLR2 and TLR4 activating capabilities by the same Leptospira strains using human and mouse TLR-expressing reporter cells. Inactivated Leptospira and leptospiral LPS activated not only mouse, but also human TLR4 and this activation was shown to be LPS dependent in both cases. Additionally, inactivated Leptospira activated mouse and human TLR2-expressing reporter cell lines. In our study, we could not identify significant species differences in the recognition of Leptospira by TLR2 and TLR4 between dog, human and mouse. Lastly, we show that these inactivated Leptospira strains are recognized by both mouse and human TLR5 reporter cells only after exposure to additional heat-treatment. Unfortunately, we were not able to confirm this in the canine system. Our data show that TLR2 and TLR4 are involved in the recognition of Leptospira strains used in the production of canine Leptospira vaccines. This study contributes to the understanding of Leptospira-induced innate immune responses in dogs, humans, and mice. Future studies are needed to further explore the role of canine TLR2, TLR4 and TLR5 in the induction of vaccine-mediated immunity against Leptospira

    Shortening the Lipid A Acyl Chains of Bordetella pertussis Enables Depletion of Lipopolysaccharide Endotoxic Activity

    Get PDF
    Whooping cough, or pertussis, is an acute respiratory infectious disease caused by the Gram-negative bacterium Bordetella pertussis. Whole-cell vaccines, which were introduced in the fifties of the previous century and proved to be effective, showed considerable reactogenicity and were replaced by subunit vaccines around the turn of the century. However, there is a considerable increase in the number of cases in industrialized countries. A possible strategy to improve vaccine-induced protection is the development of new, non-toxic, whole-cell pertussis vaccines. The reactogenicity of whole-cell pertussis vaccines is, to a large extent, derived from the lipid A moiety of the lipopolysaccharides (LPS) of the bacteria. Here, we engineered B. pertussis strains with altered lipid A structures by expressing genes for the acyltransferases LpxA, LpxD, and LpxL from other bacteria resulting in altered acyl-chain length at various positions. Whole cells and extracted LPS from the strains with shorter acyl chains showed reduced or no activation of the human Toll-like receptor 4 in HEK-Blue reporter cells, whilst a longer acyl chain increased activation. Pyrogenicity studies in rabbits confirmed the in vitro assays. These findings pave the way for the development of a new generation of whole-cell pertussis vaccines with acceptable side effects

    Shortening the Lipid A Acyl Chains of Bordetella pertussis Enables Depletion of Lipopolysaccharide Endotoxic Activity

    No full text
    Whooping cough, or pertussis, is an acute respiratory infectious disease caused by the Gram-negative bacterium Bordetella pertussis. Whole-cell vaccines, which were introduced in the fifties of the previous century and proved to be effective, showed considerable reactogenicity and were replaced by subunit vaccines around the turn of the century. However, there is a considerable increase in the number of cases in industrialized countries. A possible strategy to improve vaccine-induced protection is the development of new, non-toxic, whole-cell pertussis vaccines. The reactogenicity of whole-cell pertussis vaccines is, to a large extent, derived from the lipid A moiety of the lipopolysaccharides (LPS) of the bacteria. Here, we engineered B. pertussis strains with altered lipid A structures by expressing genes for the acyltransferases LpxA, LpxD, and LpxL from other bacteria resulting in altered acyl-chain length at various positions. Whole cells and extracted LPS from the strains with shorter acyl chains showed reduced or no activation of the human Toll-like receptor 4 in HEK-Blue reporter cells, whilst a longer acyl chain increased activation. Pyrogenicity studies in rabbits confirmed the in vitro assays. These findings pave the way for the development of a new generation of whole-cell pertussis vaccines with acceptable side effects
    corecore