45 research outputs found

    Formation and structure of transport barriers during confinement transitions in toroidal plasma

    No full text
    Density pedestal formation is studied experimentally during spontaneous low-to-high confinement transitions in the H-1 heliac. Poloidally extended potential structures, or zonal flows, seem to play the major role both in the spatial structure and in the temporal evolution of the pedestal formation. Zonal flows transiently generate radially localized maxima in the radial electric-field shear in L mode which coincides with the radial location of the pedestal in H mode

    Lagrangian scale of particle dispersion in turbulence

    Get PDF
    Transport of mass, heat and momentum in turbulent flows by far exceeds that in stable laminar fluid motions. As turbulence is a state of a flow dominated by a hierarchy of scales, it is not clear which of these scales mostly affects particle dispersion.

    Braid Entropy of Two-Dimensional Turbulence

    Get PDF
    The evolving shape of material fluid lines in a flow underlies the quantitative prediction of the dissipation and material transport in many industrial and natural processes. However, collecting quantitative data on this dynamics remains an experimental challenge in particular in turbulent flows. Indeed the deformation of a fluid line, induced by its successive stretching and folding, can be difficult to determine because such description ultimately relies on often inaccessible multi-particle information. Here we report laboratory measurements in two-dimensional turbulence that offer an alternative topological viewpoint on this issue. This approach characterizes the dynamics of a braid of Lagrangian trajectories through a global measure of their entanglement. The topological length of material fluid lines can be derived from these braids. This length is found to grow exponentially with time, giving access to the braid topological entropy . The entropy increases as the square root of the turbulent kinetic energy and is directly related to the single-particle dispersion coefficient. At long times, the probability distribution of is positively skewed and shows strong exponential tails. Our results suggest that may serve as a measure of the irreversibility of turbulence based on minimal principles and sparse Lagrangian data

    Inhibition of wave-driven two-dimensional turbulence by viscoelastic films of proteins

    Get PDF
    To model waves, surface flows, and particle dispersion at the air-water interface one needs to know the essential mechanisms affecting the fluid motion at the surface. We show that a thin film (less than 10-nm thick) of adsorbed protein dramatically affects two-dimensional turbulence generated by Faraday waves at the fluid surface. Extremely low concentrations (≈1 ppm) of soluble proteins form a strong viscoelastic layer which suppresses turbulent diffusion at the surface, changes wave patterns, and shows strong resilience to the wave-induced droplet generation. Surface shear properties of the film play a key role in this phenomenon by inhibiting the creation of vorticity at the surface. The addition of surfactants, on the other hand, destroys the nanolayer and restores the fluid mobility

    Generation of vortex lattices at the liquid-gas interface using rotating surface waves

    Get PDF
    In this paper, we demonstrate experimentally that by generating two orthogonal standing waves at the liquid surface, one can control the motion of floating microparticles. The mechanism of the vortex generation is somewhat similar to a classical Stokes drift in linear progression waves. By adjusting the relative phase between the waves, it is possible to generate a vortex lattice, seen as a stationary horizontal flow consisting of counter-rotating vortices. Two orthogonal waves which are phase-shifted by π/2 create locally rotating waves. Such waves induce nested circular drift orbits of the surface fluid particles. Such a configuration allows for the trapping of particles within a cell of the size about half the wavelength of the standing waves. By changing the relative phase, it is possible to either create or to destroy the vortex crystal. This method creates an opportunity to confine surface particles within cells, or to greatly increase mixing of the surface matter over the wave field surface.This work was supported by the Australian Research Council’s Discovery Projects funding scheme DP160100863 and Linkage Projects funding scheme LP160100477. H.X. acknowledges support from the Australian Research Council’s Future Fellowship (FT140100067). N.F. acknowledges support by the Australian Research Council’s DECRA award (DE160100742)

    Nonequilibrium Thermodynamics of Turbulence-Driven Rotors

    Get PDF
    We characterize a process of energy extraction via rectification of strongly turbulent flow by using tools of stochastic thermodynamics. We study the dynamics of an asymmetric autonomous rotor that shows biased direction of rotation when placed in a stream. We give experimental evidence that a fluctuation theorem can be used to describe the work injected in the rotor via its coupling with the turbulent flow structure. This approach allows to measure the mean power extracted from the chaotic fluid motion over a broad range of turbulent kinetic energy. A nontrivial dependence of the rotor power on flow kinetic energy is identified. This observation is described by a model taking into account the dissipation of the rotor energy and the temporal memory of coherent structures present in the turbulent flow.This work was supported by the Australian Research Council Discovery Projects and Linkage Projects funding scheme (DP160100863, DP190100406, and LP160100477). N. F. acknowledges support by the Australian Research Council’s DECRA Grant No. (DE160100742). H. X. acknowledges support from the Australian Research Council Future Fellowship (FT140100067)
    corecore