1,071 research outputs found

    Possible TeV Source Candidates In The Unidentified EGRET Sources

    Get PDF
    We study the γ\gamma-ray emission from the pulsar magnetosphere based on outer gap models, and the TeV radiation from pulsar wind nebulae (PWNe) through inverse Compton scattering using a one-zone model. We showed previously that GeV radiation from the magnetosphere of mature pulsars with ages of 105106\sim 10^5-10^6 years old can contribute to the high latitude unidentified EGRET sources. We carry out Monte Carlo simulations of γ\gamma-ray pulsars in the Galaxy and the Gould Belt, assuming the pulsar birth rate, initial position, proper motion velocity, period, and magnetic field distribution and evolution based on observational statistics. We select from the simulation a sample of mature pulsars in the Galactic plane (b5|b|\leq 5^\circ) and in the high latitude (b>5|b|> 5^\circ) which could be detected by EGRET. The TeV flux from the pulsar wind nebulae of our simulated sample through the inverse Compton scattering by relativistic electrons on the microwave cosmic background and synchrotron seed photons are calculated. The predicted fluxes are consistent with the present observational constraints. We suggest that strong EGRET sources can be potential TeV source candidates for present and future ground-based TeV telescopes.Comment: Minor changes, MNRAS in pres

    Thin accretion disks onto brane world black holes

    Get PDF
    The braneworld description of our universe entails a large extra dimension and a fundamental scale of gravity that might be lower by several orders of magnitude as compared to the Planck scale. An interesting consequence of the braneworld scenario is in the nature of the vacuum solutions of the brane gravitational field equations, with properties quite distinct as compared to the standard black hole solutions of general relativity. One possibility of observationally discriminating between different types of black holes is the study of the emission properties of the accretion disks. In the present paper we obtain the energy flux, the emission spectrum and accretion efficiency from the accretion disks around several classes of static and rotating brane world black holes, and we compare them to the general relativistic case. Particular signatures can appear in the electromagnetic spectrum, thus leading to the possibility of directly testing extra-dimensional physical models by using astrophysical observations of the emission spectra from accretion disks.Comment: 37 pages, 14 figures, accepted for publication in PR

    The Discovery of an X-ray/UV Stellar Flare from the Late-K/Early-M Dwarf LMC 335

    Get PDF
    We report the discovery of an X-ray/UV stellar flare from the source LMC 335, captured by XMM-Newton in the field of the Large Magellanic Cloud. The flare event was recorded continuously in X-ray for its first 10 hours from the precursor to the late decay phases. The observed fluxes increased by more than two orders of magnitude at its peak in X-ray and at least one in the UV as compared to quiescence. The peak 0.1-7.0 keV X-ray flux is derived from the two-temperature APEC model to be ~(8.4 +/- 0.6) x 10^-12 erg cm-2 s-1. Combining astrometric information from multiple X-ray observations in the quiescent and flare states, we identify the NIR counterpart of LMC 335 as the 2MASS source J05414534-6921512. The NIR color relations and spectroscopic parallax characterize the source as a Galactic K7-M4 dwarf at a foreground distance of (100 - 264) pc, implying a total energy output of the entire event of ~(0.4 - 2.9) x 10^35 erg. This report comprises detailed analyses of this late-K / early-M dwarf flare event that has the longest time coverage yet reported in the literature. The flare decay can be modeled with two exponential components with timescales of ~28 min and ~4 hours, with a single component decay firmly ruled out. The X-ray spectra during flare can be described by two components, a dominant high temperature component of ~40-60MK and a low temperature component of ~10MK, with a flare loop length of about 1.1-1.3 stellar radius.Comment: 35 pages, 6 figures, 5 tables, accepted for publication in Ap

    Nickel Mixing in the Outer Layers of SN 1987A

    Full text link
    Supernova 1987A remains the most well-observed and well-studied supernova to date. Observations produced excellent broad-band photometric and spectroscopic coverage over a wide wavelength range at all epochs. Here, we focus on the very early spectroscopic observations. Only recently have numerical models been of sufficient detail to accurately explain the observed spectra. In SN 1987A, good agreement has been found between observed and synthetic spectra for day one, but by day four, the predicted Balmer lines become much weaker than the observed lines. We present the results of work based on a radiation-hydrodynamic model by Blinnikov and collaborators. Synthetic non-LTE spectra generated from this model by the general radiation transfer code PHOENIX strongly support the theory that significant mixing of nickel into the outer envelope is required to maintain strong Balmer lines. Preliminary results suggest a lower limit to the average nickel mass of 1.0 \times 10^{-5} solar masses is required above 5000 \kmps by day four. PHOENIX models thus have the potential to be a sensitive probe for nickel mixing in the outer layers of a supernova.Comment: 16 pages, 7 figures, ApJ, v556 2001 (in press

    The Radon Monitoring System in Daya Bay Reactor Neutrino Experiment

    Full text link
    We developed a highly sensitive, reliable and portable automatic system (H3^{3}) to monitor the radon concentration of the underground experimental halls of the Daya Bay Reactor Neutrino Experiment. H3^{3} is able to measure radon concentration with a statistical error less than 10\% in a 1-hour measurement of dehumidified air (R.H. 5\% at 25^{\circ}C) with radon concentration as low as 50 Bq/m3^{3}. This is achieved by using a large radon progeny collection chamber, semiconductor α\alpha-particle detector with high energy resolution, improved electronics and software. The integrated radon monitoring system is highly customizable to operate in different run modes at scheduled times and can be controlled remotely to sample radon in ambient air or in water from the water pools where the antineutrino detectors are being housed. The radon monitoring system has been running in the three experimental halls of the Daya Bay Reactor Neutrino Experiment since November 2013

    The Ultraluminous X-ray Sources near the Center of M82

    Full text link
    We report the identification of a recurrent ultraluminous X-ray source (ULX), a highly absorbed X-ray source (possibly a background AGN), and a young supernova remnant near the center of the starburst galaxy M82. From a series of Chandra observations taken from 1999 to 2005, we found that the transient ULX first appeared in 1999 October. The source turned off in 2000 January, but later reappeared and has been active since then. The X-ray luminosity of this source varies from below the detection level (~2.5e38 erg/s) to its active state in between ~7e39 erg/s and 1.3e40 erg/s (in the 0.5-10 keV energy band) and shows unusual spectral changes. The X-ray spectra of some Chandra observations are best fitted with an absorbed power-law model with photon index ranging from 1.3 to 1.7. These spectra are similar to those of Galactic black hole binary candidates seen in the low/hard state except that a very hard spectrum was seen in one of the observations. By comparing with near infrared images taken with the Hubble Space Telescope, the ULX is found to be located within a young star cluster. Radio imaging indicates that it is associated with a H II region. We suggest that the ULX is likely to be a > 100 solar mass intermediate-mass black hole in the low/hard state. In addition to the transient ULX, we also found a highly absorbed hard X-ray source which is likely to be an AGN and an ultraluminous X-ray emitting young supernova remnant which may be related to a 100-year old gamma-ray burst event, within 2 arcsec of the transient ULX.Comment: 9 pages, 8 figures. Accepted for publication in Ap

    High Resolution X-Ray Imaging of the Center of IC342

    Get PDF
    We presented the result of a high resolution (FWHM~0.5'') 12 ks Chandra HRC-I observation of the starburst galaxy IC342 taken on 2 April 2006. We identified 23 X-ray sources within the central 30' x 30' region of IC342. Our HRC-I observation resolved the historical Ultraluminous X-ray sources (ULX), X3, near the nucleus into 2 sources, namely C12 and C13, for the first time. The brighter source C12, with L(0.08-10keV)=(6.66\pm0.45)\times10^{38}ergs^-1, was spatially extended (~82 pc x 127 pc). From the astrometric registration of the X-ray image, C12 was at R.A.=03h:46m:48.43s, decl.=+68d05m47.45s, and was closer to the nucleus than C13. Thus we concluded that source was not an ULX and must instead be associated with the nucleus. The fainter source C13, with L(0.08-10keV)=(5.1\pm1.4) x 10^{37}ergs^-1 was consistent with a point source and located $6.51'' at P.A. 240 degree of C12. We also analyzed astrometrically corrected optical Hubble Space Telescope and radio Very Large Array images, a comparison with the X-ray image showed similarities in their morphologies. Regions of star formation within the central region of IC342 were clearly visible in HST H alpha image and this was the region where 3 optical star clusters and correspondingly our detected X-ray source C12 were observed. We found that a predicted X-ray emission from starburst was very close to the observed X-ray luminosity of C12, suggesting that nuclear X-ray emission in IC342 was dominated by starburst. Furthermore, we discussed the possibility of AGN in the nucleus of IC342. Although our data was not enough to give a firm existence of an AGN, it could not be discarded.Comment: 29 page, 8 figures, accepted by Ap

    Physical Conditions in Circumstellar Gas surrounding SN 1987A 12 Years After Outburst

    Get PDF
    Two-dimensional spectra of Supernova 1987A were obtained on 1998 November 14-15 (4282 days after outburst) with the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope (HST). The slit sampled portions of the inner circumstellar ring at the east and west ansae as well as small sections of both the northern and southern outer rings. The temperature and density at these locations are estimated by nebular analysis of [N II], [O III], and [S II] emission line ratios, and with time-dependent photoionization/recombination models. The results from these two methods are mutually consistent. The electron density in the inner ring is ~ 4000 cm-3 for S II, with progressively lower densities for N II and O III. The electron temperatures determined from [N II] and [O III] line ratios are ~11,000 K and \~22,000 K, respectively. These results are consistent with evolutionary trends in the circumstellar gas from similar measurements at earlier epochs. We find that emission lines from the outer rings come from gas of lower density (n_e \la 2000 cm-3) than that which emits the same line in the inner ring. The N/O ratio appears to be the same in all three rings. Our results also suggest that the CNO abundances in the northern outer ring are the same as in the inner ring, contrary to earlier results of Panagia et al. (1996). Physical conditions in the southern outer ring are less certain because of poorer signal-to-noise data. The STIS spectra also reveal a weak Ha emission redshifted by ~100 km s-1 at p.a. 103\arcdeg that coincides with the recently discovered new regions that are brightening (Lawrence et al. 2000). This indicates that the shock interaction in the SE section of the inner ring commenced over a year before it became apparent in HST images.Comment: 25 pages, 6 figures, to appear in December 1, 2000 Astrophysical Journa

    The Magnetorotational Instability in Core Collapse Supernova Explosions

    Full text link
    We investigate the action of the magnetorotational instability (MRI) in the context of iron-core collapse. Exponential growth of the field on the rotation time scale by the MRI will dominate the linear growth process of field line "wrapping" with the same characteristic time. We examine a variety of initial rotation states, with solid body rotation or a gradient in rotational velocity, that correspond to models in the literature. A relatively modest value of the initial rotation, a period of ~ 10 s, will give a very rapidly rotating PNS and hence strong differential rotation with respect to the infalling matter. We assume conservation of angular momentum on spherical shells. Results are discussed for two examples of saturation fields, a fiducial field that corresponds to Alfven velocity = rotational velocity and a field that corresponds to the maximum growing mode of the MRI. Modest initial rotation velocities of the iron core result in sub-Keplerian rotation and a sub-equipartition magnetic field that nevertheless produce substantial MHD luminosity and hoop stresses: saturation fields of order 10^{15} - 10^{16} G develop within 300 msec after bounce with an associated MHD luminosity of about 10^{52} erg/s. Bi-polar flows driven by this MHD power can affect or even cause the explosions associated with core-collapse supernovae.Comment: 42 pages, including 15 figures. Accepted for publication in ApJ. We have revised to include an improved treatment of the convection, and some figures have been update
    corecore