73 research outputs found
Fluctuations in active membranes
Active contributions to fluctuations are a direct consequence of metabolic
energy consumption in living cells. Such metabolic processes continuously
create active forces, which deform the membrane to control motility,
proliferation as well as homeostasis. Membrane fluctuations contain therefore
valuable information on the nature of active forces, but classical analysis of
membrane fluctuations has been primarily centered on purely thermal driving.
This chapter provides an overview of relevant experimental and theoretical
approaches to measure, analyze and model active membrane fluctuations. In the
focus of the discussion remains the intrinsic problem that the sole fluctuation
analysis may not be sufficient to separate active from thermal contributions,
since the presence of activity may modify membrane mechanical properties
themselves. By combining independent measurements of spontaneous fluctuations
and mechanical response, it is possible to directly quantify time and
energy-scales of the active contributions, allowing for a refinement of current
theoretical descriptions of active membranes.Comment: 38 pages, 9 figures, book chapte
Differential Gene Expression Patterns of EBV Infected EBNA-3A Positive and Negative Human B Lymphocytes
The genome of Epstein-Barr virus (EBV) encodes 86 proteins, but only a limited set is expressed in EBV–growth transformed B cells, termed lymphoblastoid cell lines (LCLs). These cells proliferate via the concerted action of EBV nuclear antigens (EBNAs) and latent membrane proteins (LMPs), some of which are rate limiting to establish a stable homeostasis of growth promoting and anti-apoptotic activities. We show here that EBV mutants, which lack the EBNA-3A gene, are impaired but can still initiate cell cycle entry and proliferation of primary human B cells in contrast to an EBNA-2 deficient mutant virus. Surprisingly, and in contrast to previous reports, these viral mutants are attenuated in growth transformation assays but give rise to permanently growing EBNA-3A negative B cell lines which exhibit reduced proliferation rates and elevated levels of apoptosis. Expression profiles of EBNA-3A deficient LCLs are characterized by 129 down-regulated and 167 up-regulated genes, which are significantly enriched for genes involved in apoptotic processes or cell cycle progression like the tumor suppressor gene p16/INK4A, or might contribute to essential steps of the viral life cycle in the infected host. In addition, EBNA-3A cellular target genes remarkably overlap with previously identified targets of EBNA-2. This study comprises the first genome wide expression profiles of EBNA-3A target genes generated within the complex network of viral proteins of the growth transformed B cell and permits a more detailed understanding of EBNA-3A's function and contribution to viral pathogenesis
Peptic Ulcer in Town and Country
Striking geographical variations in the incidence of peptic ulcers have been reported from several countries. Dogra (1940) for instance, found peptic ulcer to be far more common in Southern than in Northern India, and Konstam (1954) reported a higher incidence in Southern than in Norther
- …