33 research outputs found

    Hospitalization for Hemorrhage Among Warfarin Recipients Prescribed Amiodarone

    Get PDF
    Amiodarone inhibits the hepatic metabolism of warfarin, potentiating its anticoagulant effect. However, the clinical consequences of this are not well established. Our objective in this study was to characterize the risk of hospitalization for a hemorrhage associated with the initiation of amiodarone within a cohort of continuous warfarin users in Ontario. We conducted a population-based retrospective cohort study among Ontario residents aged ≥66 years receiving warfarin. Among patients with at least 6 months of continuous warfarin therapy, we identified those who were newly prescribed amiodarone and an equal number who were not, matching on age, gender, year of cohort entry, and a high-dimensional propensity score. The primary outcome was hospitalization for hemorrhage within 30 days of amiodarone initiation. Between July 1, 1994, and March 31, 2009, we identified 60,497 patients with at least 6 months of continuous warfarin therapy, of whom 11,665 (19%) commenced amiodarone. For 7,124 (61%) of these, we identified a matched control subject who did not receive amiodarone. Overall, 56 (0.8%) amiodarone recipients and 23 (0.3%) control patients were hospitalized for hemorrhage within 30 days of initiating amiodarone (adjusted hazard ratio 2.45; 95% confidence interval, 1.49–4.02). Seven of 56 (12.5%) patients hospitalized for a hemorrhage after starting amiodarone died in hospital. In conclusion, initiation of amiodarone among older patients receiving warfarin is associated with a more than twofold increase in the risk of hospitalization for hemorrhage, with a relatively high fatality rate. Physicians should closely monitor patients who initiate amiodarone while receiving warfarin

    Bayesian Hierarchical Models Combining Different Study Types and Adjusting for Covariate Imbalances: A Simulation Study to Assess Model Performance

    Get PDF
    BACKGROUND: Bayesian hierarchical models have been proposed to combine evidence from different types of study designs. However, when combining evidence from randomised and non-randomised controlled studies, imbalances in patient characteristics between study arms may bias the results. The objective of this study was to assess the performance of a proposed Bayesian approach to adjust for imbalances in patient level covariates when combining evidence from both types of study designs. METHODOLOGY/PRINCIPAL FINDINGS: Simulation techniques, in which the truth is known, were used to generate sets of data for randomised and non-randomised studies. Covariate imbalances between study arms were introduced in the non-randomised studies. The performance of the Bayesian hierarchical model adjusted for imbalances was assessed in terms of bias. The data were also modelled using three other Bayesian approaches for synthesising evidence from randomised and non-randomised studies. The simulations considered six scenarios aimed at assessing the sensitivity of the results to changes in the impact of the imbalances and the relative number and size of studies of each type. For all six scenarios considered, the Bayesian hierarchical model adjusted for differences within studies gave results that were unbiased and closest to the true value compared to the other models. CONCLUSIONS/SIGNIFICANCE: Where informed health care decision making requires the synthesis of evidence from randomised and non-randomised study designs, the proposed hierarchical Bayesian method adjusted for differences in patient characteristics between study arms may facilitate the optimal use of all available evidence leading to unbiased results compared to unadjusted analyses

    The importance of adjusting for potential confounders in Bayesian hierarchical models synthesising evidence from randomised and non-randomised studies: an application comparing treatments for abdominal aortic aneurysms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Informing health care decision making may necessitate the synthesis of evidence from different study designs (e.g., randomised controlled trials, non-randomised/observational studies). Methods for synthesising different types of studies have been proposed, but their routine use requires development of approaches to adjust for potential biases, especially among non-randomised studies. The objective of this study was to extend a published Bayesian hierarchical model to adjust for bias due to confounding in synthesising evidence from studies with different designs.</p> <p>Methods</p> <p>In this new methodological approach, study estimates were adjusted for potential confounders using differences in patient characteristics (e.g., age) between study arms. The new model was applied to synthesise evidence from randomised and non-randomised studies from a published review comparing treatments for abdominal aortic aneurysms. We compared the results of the Bayesian hierarchical model adjusted for differences in study arms with: 1) unadjusted results, 2) results adjusted using aggregate study values and 3) two methods for downweighting the potentially biased non-randomised studies. Sensitivity of the results to alternative prior distributions and the inclusion of additional covariates were also assessed.</p> <p>Results</p> <p>In the base case analysis, the estimated odds ratio was 0.32 (0.13,0.76) for the randomised studies alone and 0.57 (0.41,0.82) for the non-randomised studies alone. The unadjusted result for the two types combined was 0.49 (0.21,0.98). Adjusted for differences between study arms, the estimated odds ratio was 0.37 (0.17,0.77), representing a shift towards the estimate for the randomised studies alone. Adjustment for aggregate values resulted in an estimate of 0.60 (0.28,1.20). The two methods used for downweighting gave odd ratios of 0.43 (0.18,0.89) and 0.35 (0.16,0.76), respectively. Point estimates were robust but credible intervals were wider when using vaguer priors.</p> <p>Conclusions</p> <p>Covariate adjustment using aggregate study values does not account for covariate imbalances between treatment arms and downweighting may not eliminate bias. Adjustment using differences in patient characteristics between arms provides a systematic way of adjusting for bias due to confounding. Within the context of a Bayesian hierarchical model, such an approach could facilitate the use of all available evidence to inform health policy decisions.</p

    Comparing methods to estimate treatment effects on a continuous outcome in multicentre randomized controlled trials: A simulation study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multicentre randomized controlled trials (RCTs) routinely use randomization and analysis stratified by centre to control for differences between centres and to improve precision. No consensus has been reached on how to best analyze correlated continuous outcomes in such settings. Our objective was to investigate the properties of commonly used statistical models at various levels of clustering in the context of multicentre RCTs.</p> <p>Methods</p> <p>Assuming no treatment by centre interaction, we compared six methods (ignoring centre effects, including centres as fixed effects, including centres as random effects, generalized estimating equation (GEE), and fixed- and random-effects centre-level analysis) to analyze continuous outcomes in multicentre RCTs using simulations over a wide spectrum of intraclass correlation (ICC) values, and varying numbers of centres and centre size. The performance of models was evaluated in terms of bias, precision, mean squared error of the point estimator of treatment effect, empirical coverage of the 95% confidence interval, and statistical power of the procedure.</p> <p>Results</p> <p>While all methods yielded unbiased estimates of treatment effect, ignoring centres led to inflation of standard error and loss of statistical power when within centre correlation was present. Mixed-effects model was most efficient and attained nominal coverage of 95% and 90% power in almost all scenarios. Fixed-effects model was less precise when the number of centres was large and treatment allocation was subject to chance imbalance within centre. GEE approach underestimated standard error of the treatment effect when the number of centres was small. The two centre-level models led to more variable point estimates and relatively low interval coverage or statistical power depending on whether or not heterogeneity of treatment contrasts was considered in the analysis.</p> <p>Conclusions</p> <p>All six models produced unbiased estimates of treatment effect in the context of multicentre trials. Adjusting for centre as a random intercept led to the most efficient treatment effect estimation across all simulations under the normality assumption, when there was no treatment by centre interaction.</p

    The relative efficacy of nine osteoporosis medications for reducing the rate of fractures in post-menopausal women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the absence of head-to-head trials, indirect comparisons of randomized placebo-controlled trials may provide a viable option to assess relative efficacy. The purpose was to estimate the relative efficacy of reduction of fractures in post-menopausal women, and to assess robustness of the results.</p> <p>Methods</p> <p>A systematic literature review of multiple databases identified randomized placebo-controlled trials with nine drugs for post-menopausal women. Odds ratio and 95% credibility intervals for the rates of hip, non-vertebral, vertebral, and wrist fractures for each drug and between drugs were derived using a Bayesian approach. A drug was ranked as the most efficacious if it had the highest posterior odds ratio, or had the highest effect size.</p> <p>Results</p> <p>30 studies including 59,209 patients reported fracture rates for nine drugs: alendronate (6 studies), denosumab (1 study), etidronate (8 studies), ibandronate (4 studies), raloxifene (1 study), risedronate (7 studies), strontium (2 study), teriparatide (1 study), and zoledronic acid (1 study). The drugs with the highest probability of reducing non-vertebral fractures was etidronate and teriparatide while the drugs with the highest probability of reducing vertebral, hip or wrist fractures were teriparatide, zoledronic acid and denosumab. The drugs with the largest effect size for vertebral fractures were zoledronic acid, teriparatide and denosumab, while the drugs with the highest effect size for non-vertebral, hip or wrist fractures were alendronate or risedronate. Estimates were consistent between Bayesian and classical approaches.</p> <p>Conclusion</p> <p>Teriparatide, zoledronic acid and denosumab have the highest probabilities of being most efficacious for non-vertebral and vertebral fractures, and having the greatest effect sizes. The estimates from indirect comparisons were robust to differences in methodology.</p

    Marginal Models for Censored Longitudinal Cost Data: Appropriate Working Variance Matrices in Inverse-Probability-Weighted GEEs Can Improve Precision

    No full text
    When cost data are collected in a clinical study, interest centers on the between-treatment difference in mean cost. When censoring is present, the resulting loss of information can be limited by collecting cost data for several pre-specified time intervals, leading to censored longitudinal cost data. Most models for marginal costs stratify by time interval. However, in few other areas of biostatistics would we stratify by default. We argue that there are benefits to considering more general models: for example, in some settings, pooling regression coefficients across intervals can improve the precision of the estimated between-treatment difference in mean cost. Previous work has used inverse-probability-weighted GEEs coupled with an independent working variance to estimate parameters from these more general models. We show that the greatest precision benefits of non-stratified models are achieved by using more sophisticated working variance matrices.
    corecore