4 research outputs found

    Enrichment of Bio-Active Phthalides in Celery Seed Oil

    No full text
    Objective: To develop an efficient process to obtain a phthalide-enriched nutraceutical fraction from celery seed oil.Methods: Three approaches viz., fractional distillation, column chromatography and solvent-solvent partition, have been used.Results: Fractional distillation of celery seed oil (13.7g) afforded i) a limonene-rich fraction (7.6g, 97% purity), ii) a fraction containing β-selinene (2.8 g, 90 % purity) and iii) one containing phthalides (2.9 g, 90 % purity). Solvent-solvent partition of celery seed oil gave limonene (87%) and a fraction containing phthalides (49%), which on further fractionation afforded a phthalide-enriched fraction (90%). By conventional silica gel column chromatography, a product rich in phthalides (53-74%) could be obtained.Conclusion: Fractional distillation is shown to be a viable method to process celery seed oil into a phthalide-enriched product with high nutraceutical potential

    Enrichment of Bio-Active Phthalides in Celery Seed Oil

    No full text
    Objective: To develop an efficient process to obtain a phthalide-enriched nutraceutical fraction from celery seed oil.Methods: Three approaches viz., fractional distillation, column chromatography and solvent-solvent partition, have been used.Results: Fractional distillation of celery seed oil (13.7g) afforded i) a limonene-rich fraction (7.6g, 97% purity), ii) a fraction containing β-selinene (2.8 g, 90 % purity) and iii) one containing phthalides (2.9 g, 90 % purity). Solvent-solvent partition of celery seed oil gave limonene (87%) and a fraction containing phthalides (49%), which on further fractionation afforded a phthalide-enriched fraction (90%). By conventional silica gel column chromatography, a product rich in phthalides (53-74%) could be obtained.Conclusion: Fractional distillation is shown to be a viable method to process celery seed oil into a phthalide-enriched product with high nutraceutical potential

    Curcumin-glucoside, A Novel Synthetic Derivative of Curcumin, Inhibits alpha-Synuclein Oligomer Formation: Relevance to Parkinson's Disease

    No full text
    alpha-Synuclein aggregation is centrally implicated in Parkinson's disease (PD). It involves multi-step nucleated polymerization process via the formation of dimers, soluble toxic oligomers and insoluble fibrils. In the present study, we synthesized a novel compound viz., Curcumin-glucoside (Curc-gluc), a modified form of curcumin and studied its anti-aggregating potential with alpha-synuclein. Under aggregating conditions in vitro, Curc-gluc prevents oligomer formation as well as inhibits fibril formation indicating favorable stoichiometry for inhibition. The binding efficacies of Curc-gluc to both alpha-synuclein monomeric and oligomeric forms were characterized by micro-calorimetry. It was observed that titration of Curc-gluc with alpha-synuclein monomer yielded very low heat values with low binding while, in case of oligomers, Curc-gluc showed significant binding. Addition of Curc-gluc inhibited aggregation in a dose-dependent manner and enhanced alpha-synuclein solubility, which propose that Curc-gluc solubilizes the oligomeric form by disintegrating preformed fibrils and this is a novel observation. Overall, the data suggest that Curc-gluc binds to alpha-synuclein oligomeric form and prevents further fibrillization of alpha-synuclein; this might aid the development of disease modifying agents in preventing or treating PD
    corecore