136 research outputs found
Maximum Resilience of Artificial Neural Networks
The deployment of Artificial Neural Networks (ANNs) in safety-critical
applications poses a number of new verification and certification challenges.
In particular, for ANN-enabled self-driving vehicles it is important to
establish properties about the resilience of ANNs to noisy or even maliciously
manipulated sensory input. We are addressing these challenges by defining
resilience properties of ANN-based classifiers as the maximal amount of input
or sensor perturbation which is still tolerated. This problem of computing
maximal perturbation bounds for ANNs is then reduced to solving mixed integer
optimization problems (MIP). A number of MIP encoding heuristics are developed
for drastically reducing MIP-solver runtimes, and using parallelization of
MIP-solvers results in an almost linear speed-up in the number (up to a certain
limit) of computing cores in our experiments. We demonstrate the effectiveness
and scalability of our approach by means of computing maximal resilience bounds
for a number of ANN benchmark sets ranging from typical image recognition
scenarios to the autonomous maneuvering of robots.Comment: Timestamp research work conducted in the project. version 2: fix some
typos, rephrase the definition, and add some more existing wor
Translation-based approaches for solving disjunctive temporal problems with preferences
Disjunctive Temporal Problems (DTPs) with Preferences (DTPPs) extend DTPs with piece-wise constant preference functions associated to each constraint of the form l 64 x 12 y 64 u, where x, y are (real or integer) variables, and l, u are numeric constants. The goal is to find an assignment to the variables of the problem that maximizes the sum of the preference values of satisfied DTP constraints, where such values are obtained by aggregating the preference functions of the satisfied constraints in it under a \u201cmax\u201d semantic. The state-of-the-art approach in the field, implemented in the native DTPP solver Maxilitis, extends the approach of the native DTP solver Epilitis. In this paper we present alternative approaches that translate DTPPs
to Maximum Satisfiability of a set of Boolean combination of constraints of the form l ./ x 12 y ./ u, ./ 08 {<, 64}, that extend previous work dealing with constant preference functions only. We prove correctness and completeness of the approaches. Results obtained with the Satisfiability Modulo Theories (SMT) solvers Yices and MathSAT on randomly generated DTPPs and DTPPs built from real-world benchmarks, show that one of our translation is competitive to, and can be faster than, Maxilitis
Feature-Guided Black-Box Safety Testing of Deep Neural Networks
Despite the improved accuracy of deep neural networks, the discovery of
adversarial examples has raised serious safety concerns. Most existing
approaches for crafting adversarial examples necessitate some knowledge
(architecture, parameters, etc.) of the network at hand. In this paper, we
focus on image classifiers and propose a feature-guided black-box approach to
test the safety of deep neural networks that requires no such knowledge. Our
algorithm employs object detection techniques such as SIFT (Scale Invariant
Feature Transform) to extract features from an image. These features are
converted into a mutable saliency distribution, where high probability is
assigned to pixels that affect the composition of the image with respect to the
human visual system. We formulate the crafting of adversarial examples as a
two-player turn-based stochastic game, where the first player's objective is to
minimise the distance to an adversarial example by manipulating the features,
and the second player can be cooperative, adversarial, or random. We show that,
theoretically, the two-player game can con- verge to the optimal strategy, and
that the optimal strategy represents a globally minimal adversarial image. For
Lipschitz networks, we also identify conditions that provide safety guarantees
that no adversarial examples exist. Using Monte Carlo tree search we gradually
explore the game state space to search for adversarial examples. Our
experiments show that, despite the black-box setting, manipulations guided by a
perception-based saliency distribution are competitive with state-of-the-art
methods that rely on white-box saliency matrices or sophisticated optimization
procedures. Finally, we show how our method can be used to evaluate robustness
of neural networks in safety-critical applications such as traffic sign
recognition in self-driving cars.Comment: 35 pages, 5 tables, 23 figure
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Deep neural networks have emerged as a widely used and effective means for
tackling complex, real-world problems. However, a major obstacle in applying
them to safety-critical systems is the great difficulty in providing formal
guarantees about their behavior. We present a novel, scalable, and efficient
technique for verifying properties of deep neural networks (or providing
counter-examples). The technique is based on the simplex method, extended to
handle the non-convex Rectified Linear Unit (ReLU) activation function, which
is a crucial ingredient in many modern neural networks. The verification
procedure tackles neural networks as a whole, without making any simplifying
assumptions. We evaluated our technique on a prototype deep neural network
implementation of the next-generation airborne collision avoidance system for
unmanned aircraft (ACAS Xu). Results show that our technique can successfully
prove properties of networks that are an order of magnitude larger than the
largest networks verified using existing methods.Comment: This is the extended version of a paper with the same title that
appeared at CAV 201
Polimorfismi biochimici nel sangue e nel latte della capra sarda
The Authors, in a study on 990 individual samples of blood and milk collected from Sardinian goats, have
found the presence of polymorphism at the loci Hb, Tf, X protein, β- Lg, αs-Cn, while the loci Alb, CA, SOD,
α-La, β-Cn were monomorphic
Property specification patterns at work: verification and inconsistency explanation
Property specification patterns (PSPs) have been proposed to ease the formalization of requirements, yet enable automated verification thereof. In particular, the internal consistency of specifications written with PSPs can be checked automatically with the use of, for example, linear temporal logic (LTL) satisfiability solvers. However, for most practical applications, the expressiveness of PSPs is too restricted to enable writing useful requirement specifications, and proving that a set of requirements is inconsistent can be worthless unless a minimal set of conflicting requirements is extracted to help designers to correct a wrong specification. In this paper, we extend PSPs by considering Boolean as well as atomic numerical assertions, we contribute an encoding from extended PSPs to LTL formulas, and we present an algorithm computing inconsistency explanations, i.e., irreducible inconsistent subsets of the original set of requirements. Our extension enables us to reason about the internal consistency of functional requirements which would not be captured by basic PSPs. Experimental results demonstrate that our approach can check and explain (in)consistencies in specifications with nearly two thousand requirements generated using a probabilistic model, and that it enables effective handling of real-world case studies
Robustness Verification of Support Vector Machines
We study the problem of formally verifying the robustness to adversarial
examples of support vector machines (SVMs), a major machine learning model for
classification and regression tasks. Following a recent stream of works on
formal robustness verification of (deep) neural networks, our approach relies
on a sound abstract version of a given SVM classifier to be used for checking
its robustness. This methodology is parametric on a given numerical abstraction
of real values and, analogously to the case of neural networks, needs neither
abstract least upper bounds nor widening operators on this abstraction. The
standard interval domain provides a simple instantiation of our abstraction
technique, which is enhanced with the domain of reduced affine forms, which is
an efficient abstraction of the zonotope abstract domain. This robustness
verification technique has been fully implemented and experimentally evaluated
on SVMs based on linear and nonlinear (polynomial and radial basis function)
kernels, which have been trained on the popular MNIST dataset of images and on
the recent and more challenging Fashion-MNIST dataset. The experimental results
of our prototype SVM robustness verifier appear to be encouraging: this
automated verification is fast, scalable and shows significantly high
percentages of provable robustness on the test set of MNIST, in particular
compared to the analogous provable robustness of neural networks
An Abstraction-Based Framework for Neural Network Verification
Deep neural networks are increasingly being used as controllers for safety-critical systems. Because neural networks are opaque, certifying their correctness is a significant challenge. To address this issue, several neural network verification approaches have recently been proposed. However, these approaches afford limited scalability, and applying them to large networks can be challenging. In this paper, we propose a framework that can enhance neural network verification techniques by using over-approximation to reduce the size of the network—thus making it more amenable to verification. We perform the approximation such that if the property holds for the smaller (abstract) network, it holds for the original as well. The over-approximation may be too coarse, in which case the underlying verification tool might return a spurious counterexample. Under such conditions, we perform counterexample-guided refinement to adjust the approximation, and then repeat the process. Our approach is orthogonal to, and can be integrated with, many existing verification techniques. For evaluation purposes, we integrate it with the recently proposed Marabou framework, and observe a significant improvement in Marabou’s performance. Our experiments demonstrate the great potential of our approach for verifying larger neural networks
NNV: The Neural Network Verification Tool for Deep Neural Networks and Learning-Enabled Cyber-Physical Systems
This paper presents the Neural Network Verification (NNV) software tool, a
set-based verification framework for deep neural networks (DNNs) and
learning-enabled cyber-physical systems (CPS). The crux of NNV is a collection
of reachability algorithms that make use of a variety of set representations,
such as polyhedra, star sets, zonotopes, and abstract-domain representations.
NNV supports both exact (sound and complete) and over-approximate (sound)
reachability algorithms for verifying safety and robustness properties of
feed-forward neural networks (FFNNs) with various activation functions. For
learning-enabled CPS, such as closed-loop control systems incorporating neural
networks, NNV provides exact and over-approximate reachability analysis schemes
for linear plant models and FFNN controllers with piecewise-linear activation
functions, such as ReLUs. For similar neural network control systems (NNCS)
that instead have nonlinear plant models, NNV supports over-approximate
analysis by combining the star set analysis used for FFNN controllers with
zonotope-based analysis for nonlinear plant dynamics building on CORA. We
evaluate NNV using two real-world case studies: the first is safety
verification of ACAS Xu networks and the second deals with the safety
verification of a deep learning-based adaptive cruise control system
- …