39 research outputs found

    A methodology to analyse and assess pumping management strategies in coastal aquifers to avoid degradation due to seawater intrusion problems

    Get PDF
    In this paper we will focus on an interesting and complex problem, the analysis of coastal aquifer management alternatives in aquifers affected by seawater intrusion problems. A systhematic method based on an approximation of the safe yield concept for coastal aquifers and a simple model approach to the problem is proposed to help in the decision making process. It is based on the assessment of an index, that we have called the Pumping Reduction to Achieve a Natural Good Status (PRANGS), which we have defined as the minimum reduction in pumped abstractions necessary to maintain seawater intrusion below the value estimated for the natural regime under different climate conditions: humid (PRANGSh), intermediate (PRANGSi) and dry years (PRANGSd). It requires to solve an optimization problem (for each of the climate conditions: humid, intermediate and dry years), whose objective function is to minimize the reduction in pumping whilst ensuring intrusion does not exceed the natural regime ones. A simulation model that provides a valid approximation of seawater intrusion is needed. The methodology was applied to a well-known Spanish Mediterranean aquifer, the Oropesa-Torreblanca Plain aquifer. The optimization problem was solved using an iterative process from a constant density flow simulation model of the aquifer, assuming a direct relationship between piezometric drawdown and seawater intrusion

    Data-driven mapping of hourly wind speed and its potential energy resources: A sensitivity analysis

    Get PDF
    Renewable energies play a significant role to mitigate the impacts of climate change. In countries like Spain, there is a significant potential of wind energy production which might be a key resource. In this research, we obtain wind power at 80 meters height and wind turbine energy (assuming a specific turbine). To achieve this objective we produce an optimal mapping of the hourly “instantaneous surface wind speed” (height 10 m), based on the available data. An extensive region (Granada Province, south Spain) is studied with a spatial resolution of 300 m, during a long period (1996-2016). It allows us to assess the intra- and inter-daily variability of wind energy resources. Several interpolation approaches are tested and a cross validation experiment is applied to identify the optimal approach. The obtained maps were compared with the results obtained in the stations with two common frequency distributions (Rayleigh and Weibull). This is the first time that this sensitivity integrated analysis is performed over an extensive region (12600 km2) for a long time period (20 years) at fine spatiotemporal resolution (300 m, hourly scale). The results can be very valuable for a preliminary analysis of potential optimal location of wind energies facilities

    Global Assessment of Seawater Intrusion Problems (Status and Vulnerability)

    Get PDF
    In this research paper we propose a novel method to perform an integrated analysis of the status and vulnerability of coastal aquifers to seawater intrusion (SWI). The method is based on a conceptual approach of intrusion that allows to summarised results in a visual way at different spatial scales, moving from steady pictures (corresponding to instantaneous or mean values in a period) including maps and 2D conceptual crosssections and temporal series of lumped indices. Our aim is to help in the identification of coastal groundwater bodies at risk of not achieving good chemical status according to the Water Framework Directive. The indices are obtained from available information about aquifer geometry and historical monitoring data (chloride concentration and hydraulic head data). This method may be applied even in cases where a reduced number of data are available. It does not require complex modelling and has been implemented in a GIS tool that encourages its use in other cases. Analysis of the evolution of historical time series of these indices can be used to assess resilience and trends with respect to SWI problems. This method can be also useful to compare intrusion problems in different aquifers and temporal periods

    Analysis of the Potential Impact of Climate Change on Climatic Droughts, Snow Dynamics, and the Correlation between Them

    Get PDF
    Acknowledgments: We would like to thank the Spain02, Aemet 5 km, SPREAD, STEAD, and CORDEX projects for the data provided for this study. The work of the first author at “Instituto Geológico y Minero de España” was conducted within the internship program of the Master in Water Quality Science and Technology (University of Granada).Funding: This research was partially supported by the research project SIGLO-AN (RTI2018-101397- B-I00) from the Spanish Ministry of Science, Innovation and Universities (Programa Estatal de ICDCI orientado a los Retos de la Sociedad), the GeoE.171.008.TACTIC from the GeoERA organization funded by European Union’s Horizon 2020 research and innovation program and the Regional Ministry of Economic Transformation, Industry, Knowledge and Universities of the Regional Government of Andalusia through the postdoc program of the Andalusian Plan for Research Development and Innovation (PAIDI 2021) (POSTDOC_21_00154, University of Granada, Antonio-Juan Collados-Lara).Climate change is expected to increase the occurrence of droughts, with the hydrology in alpine systems being largely determined by snow dynamics. In this paper, we propose a methodology to assess the impact of climate change on both meteorological and hydrological droughts, taking into account the dynamics of the snow cover area (SCA). We also analyze the correlation between these types of droughts. We generated ensembles of local climate scenarios based on regional climate models (RCMs) representative of potential future conditions. We considered several sources of uncertainty: different historical climate databases, simulations obtained with several RCMs, and some statistical downscaling techniques. We then used a stochastic weather generator (SWG) to generate multiple climatic series preserving the characteristics of the ensemble scenario. These were simulated within a cellular automata (CA) model to generate multiple SCA future series. They were used to calculate multiple series of meteorological drought indices, the Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), and a novel hydrological drought index (Standardized Snow Cover Index (SSCI)). Linear correlation analysis was applied to both types of drought to analyze how they propagate and the time delay between them. We applied the proposed methodology to the Sierra Nevada (southern Spain), where we estimated a general increase in meteorological and hydrological drought magnitude and duration for the horizon 2071–2100 under the RCP 8.5 emission scenario. The SCA droughts also revealed a significant increase in drought intensity. The meteorological drought propagation to SCA droughts was reflected in an immediate or short time (1 month), obtaining significant correlations in lower accumulation periods of drought indices (3 and 6 months). This allowed us to obtain information about meteorological drought from SCA deficits and vice versa.Research project SIGLO-AN (RTI2018-101397- B-I00) from the Spanish Ministry of Science, Innovation and UniversitiesGeoE.171.008.TACTIC from the GeoERA organization funded by European Union’s Horizon 2020Andalusian Plan for Research Development and Innovation PAIDI 2021, POSTDOC_21_0015

    Management Alternatives of Aquifer Storage, Distribution, and Simulation in Conjunctive Use

    Full text link
    [EN] Aquifers are ubiquitous, and their water is easy to obtain with low extraction costs. On many occasions, these characteristics lead to overexploitation due to important water level declines, reduction of river base flows, enhanced seawater intrusion, and wetland affection. The forecasted increase in water demands and global warming will impact the future availability of water resources. Conjunctive use of surface and subsurface waters can help in mitigating these impacts. There are two main conjunctive use strategies: artificial recharge (AR) and alternate conjunctive use (ACU). AR stores waters that are not to be used directly in aquifers. ACU utilizes groundwater in dry periods, while surface waters are preferred in wet ones; this allows the increase of water supply with lower dam storage, economic gains, and environmental advantages. Efficient conjunctive use can prevent soil salinization and waterlogging problems in semiarid countries due to excessive recharge from irrigation return flows or other origins. Groundwater is a neglected and generally misused resource to maintain environmental conditions. When considering the solution to a water resources problem, groundwater should always be part of the design as an alternative or a complementary resource. Aquifers have large inertia, and changes in their volumes are only noticeable after years of observations. Unfortunately, groundwater observation networks are much poorer than surface ones, something that should be changed if groundwater is to come to the rescue in these times of climate change. Human and material resources should be made available to monitor, control, analyze, and forecast groundwater.This research was funded by AGREEMAR Project (PCI2022-133001 funded by Spain's MCIN/AEI/10.13039/501100011033, by European Union's NextGenerationEU/PRTR), the SIGLOAN project (RTI2018-101397-B-I00) from the Spanish Ministry of Science, Innovation and Universities (Programa Estatal de I + D + i Orientada a los Retos de la Sociedad) and by project eGROUNDWATER funded by the PRIMA programme supported by the European's Union Horizon 2020 research and innovation programme under grant number 1921.Sahuquillo, A.; Cassiraga, EF.; Gómez-Hernández, JJ.; Andreu Álvarez, J.; Pulido-Velazquez, M.; Pulido Velázquez, D.; Álvarez-Villa, ÓD.... (2022). Management Alternatives of Aquifer Storage, Distribution, and Simulation in Conjunctive Use. Water. 14(15):1-15. https://doi.org/10.3390/w14152332115141

    Insights into the Antimicrobial Mechanism of Action of Human RNase6 : Structural Determinants for Bacterial Cell Agglutination and Membrane Permeation

    Get PDF
    Human Ribonuclease 6 is a secreted protein belonging to the ribonuclease A (RNaseA) superfamily, a vertebrate specific family suggested to arise with an ancestral host defense role. Tissue distribution analysis revealed its expression in innate cell types, showing abundance in monocytes and neutrophils. Recent evidence of induction of the protein expression by bacterial infection suggested an antipathogen function in vivo. In our laboratory, the antimicrobial properties of the protein have been evaluated against Gram-negative and Gram-positive species and its mechanism of action was characterized using a membrane model. Interestingly, our results indicate that RNase6, as previously reported for RNase3, is able to specifically agglutinate Gram-negative bacteria as a main trait of its antimicrobial activity. Moreover, a side by side comparative analysis with the RN6(1-45) derived peptide highlights that the antimicrobial activity is mostly retained at the protein N-terminus. Further work by site directed mutagenesis and structural analysis has identified two residues involved in the protein antimicrobial action (Trp1 and Ile13) that are essential for the cell agglutination properties. This is the first structure-functional characterization of RNase6 antimicrobial properties, supporting its contribution to the infection focus clearance

    Dynamic Bayesian Networks as a Decision Support Tool for assessing Climate Change impacts on highly stressed groundwater systems

    Full text link
    Bayesian Networks (BNs) are powerful tools for assessing and predicting consequences of water management scenarios and uncertain drivers like climate change, integrating available scientific knowledge with the interests of the multiple stakeholders. However, among their major limitations, the non-transient treatment of the cause-effect relationship stands out. A Decision Support System (DSS) based on Dynamic Bayesian Networks (DBNs) is proposed here aimed to palliate that limitation through time slicing technique. The DSS comprises several classes (Object-Oriented BN networks), especially designed for future 5 years length time steps (time slices), covering a total control period of 30 years (2070-2100). The DSS has been developed for assessing impacts generated by different Climate Change (CC) scenarios (generated from several Regional Climatic Models (RCMs) under two emission scenarios, A1B and A2) in an aquifer system (Serral-Salinas) affected by intensive groundwater use over the last 30 years. A calibrated continuous water balance model was used to generate hydrological CC scenarios, and then a groundwater flow model (MODFLOW) was employed in order to analyze the aquifer behavior under CC conditions. Results obtained from both models were used as input for the DSS, considering rainfall, aquifer recharge, variation of piezometric levels and temporal evolution of aquifer storage as the main hydrological components of the aquifer system. Results show the evolution of the aquifer storage for each future time step under different climate change conditions and under controlled water management interventions. This type of applications would allow establishing potential adaptation strategies for aquifer systems as the CC comes into effectThis study has been partially supported by the European Community 7th Framework Project GENESIS (226536) on groundwater systems and from the subprogram Juan de la Cierva (2010) of the Spanish Ministry of Science and Innovation as well as from the Plan Nacional I+D+i 2008-2011 of the Spanish Ministry of Science and Innovation (Subprojects CGL2009-13238-C02-01 and CGL2009-13238-C02-02). T. Finally, the authors want to thank the Segura River Basin Agency (Confederacion Hidrografica del Segura) for the data and information facilitated, and to all the stakeholders who have collaborated in this research.Molina, JL.; Pulido Velázquez, D.; García-Arostegui, J.; Pulido-Velazquez, M. (2013). Dynamic Bayesian Networks as a Decision Support Tool for assessing Climate Change impacts on highly stressed groundwater systems. Journal of Hydrology. 479:113-129. https://doi.org/10.1016/j.jhydrol.2012.11.038S11312947

    Summarizing the impacts of future potential global change scenarios on seawater intrusion at the aquifer scale

    Get PDF
    [EN] Climate change affects rainfall and temperature producing a breakdown in the water balance and a variation in the dynamic of freshwater-seawater in coastal areas, exacerbating seawater intrusion (SWI) problems. The target of this paper is to propose a method to assess and analyze impacts of future global change (GC) scenarios on SWI at the aquifer scale in a coastal area. Some adaptation measures have been integrated in the definition of future GC scenarios incorporating complementary resources within the system in accordance with urban development planning. The proposed methodology summarizes the impacts of potential GC scenarios in terms of SWI status and vulnerability at the aquifer scale through steady pictures (maps and conceptual 2D cross sections for specific dates or statistics of a period) and time series for lumped indices. It is applied to the Plana de Oropesa-Torreblanca aquifer. The results summarize the influence of GC scenarios in the global status and vulnerability to SWI under some management scenarios. These GC scenarios would produce higher variability of SWI status and vulnerability.This work has been partially supported by the GeoE.171.008-TACTIC and GeoE.171.008-HOVER projects from GeoERA organization funded by European Union's Horizon 2020 research and innovation program; Plan de Garantia Juvenil from MINECO (Ministerio de Economia y Competitividad), co-inancing by BEI (Banco Europeo de Inversiones) and FSE (Fondo Social Europeo); and SIGLO-AN (RTI2018-101397-B-I00) project from the Spanish Ministry of Science, Innovation and Universities (Programa Estatal de I+D+I orientada a los Retos de la Sociedad). The authors also thank AEMET and UC for the data provided for this work (Spain02 dataset, https://www.meteo.unican.es/datasets/spain02).Baena-Ruiz, L.; Pulido-Velázquez, D.; Collados-Lara, A.; Renau-Pruñonosa, A.; Morell, I.; Senent-Aparicio, J.; Llopis-Albert, C. (2020). Summarizing the impacts of future potential global change scenarios on seawater intrusion at the aquifer scale. Environmental Earth Sciences. 79(5):1-13. https://doi.org/10.1007/s12665-020-8847-2S113795Baena-Ruiz L, Pulido-Velazquez D, Collados-Lara AJ, Renau-Pruñonosa A, Morell I (2018) Global assessment of seawater intrusion problems (status and vulnerability). Water Resour Manage 32:2681–2700. https://doi.org/10.1007/s11269-018-1952-2Benini L, Antonellini M, Laghi L (2016) Assessment of water resources availability and groundwater salinization in future climate and land use change scenarios: a case study from a coastal drainage basin in Italy. Water Resour Manage 30:731–745. https://doi.org/10.1007/s11269-015-1187-4Chachadi AG, Lobo-Ferreira JP (2005) Assessing aquifer vulnerability to sea-water intrusion using GALDIT method: part 2—GALDIT indicator descriptions. IAHS and LNEC. In: Proceedings of the 4th The Fourth Inter Celtic Colloquium on Hydrology and Management of Water Resources, held at Universidade do Minho, Guimarães, Portugal, July 11–13, 2005CHJ (Júcar Water Agency) (2015) Júcar River Basin Plan. Confederación Hidrográfica del Júcar https://www.chj.es/es-es/medioambiente/planificacionhidrologica/Paginas/PHC-2015-2021-Plan-Hidrologico-cuenca.aspx. Accessed 21 Oct 2019Collados-Lara A-J, Pulido-Velazquez D, Pardo-Igúzquiza E (2018) An integrated statistical method to generate potential future climate scenarios to analyse droughts. Water 10:1224–1248. https://doi.org/10.3390/w10091224CORDEX PROJECT (2013) The Coordinated Regional Climate Downscaling Experiment CORDEX. Program sponsored by 20 World Climate Research Program (WCRP). https://wcrp-cordex.ipsl.jussieu.fr/. Accessed 21 Oct 2019Escriva-Bou A, Pulido-Velazquez M, Pulido-Velazquez D (2017) Economic value of climate change adaptation strategies for water management in Spain’s Jucar basin. J Water Res Plan Manag 143(5):04017005. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000735Feranec J, Jaffrain G, Soukup T, Hazeu G (2010) Determining changes and flows in European landscapes 1990–2000 using CORINE land cover data. Appl Geogr 30(1):19–35. https://doi.org/10.1016/j.apgeog.2009.07.003Ferguson G, Gleeson T (2012) Vulnerability of coastal aquifers to groundwater use and climate change. Nat Clim Change 2(5):342–345Giménez E, Morell I (1997) Hydrogeochemical analysis of salinization processes in the coastal aquifer of Oropesa (Castellón, Spain). Environ Geol 29(1–2):118–131. https://doi.org/10.1007/s002540050110Grundmann J, Schütze N, Schmitz GH, Al-Shaqsi S (2012) Towards an integrated arid zone water management using simulation-based optimisation. Environ Earth Sci 65(5):1381–1394Herrera S, Gutiérrez JM, Ancell R, Pons MR, Frías MD, Fernández J (2012) Development and analysis of a 50 year high-resolution daily gridded precipitation dataset over Spain (Spain02). Int J Climatol 32:74–85. https://doi.org/10.1002/joc.2256Herrera S, Fernández J, Gutiérrez JM (2016) Update of the Spain02 gridded observational dataset for euro-CORDEX evaluation: assessing the effect of the interpolation methodology. Int J Climatol 36:900–908. https://doi.org/10.1002/joc.4391Huang L, Zeng G, Liang J, Hua S, Yuan Y, Li X, Liu J (2017) Combined impacts of land use and climate change in the modeling of future groundwater vulnerability. J Hydrol Eng 22(7):05017007. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001493Kløve B, Ala-Aho P, Bertrand G, Gurdak JJ, Kupfersberger H, Kværner J, Uvo CB (2014) Climate change impacts on groundwater and dependent ecosystems. J Hydrol 518:250–266. https://doi.org/10.1016/j.jhydrol.2013.06.037Koutroulis AG, Papadimitriou LV, Grillakis MG, Tsanis IK, Wyser K, Betts RA (2018) Freshwater vulnerability under high end climate change. A pan-European assessment. Sci Total Environ 613:271–286. https://doi.org/10.1016/j.scitotenv.2017.09.074Li R, Merchant JW (2013) Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change: a case study in North Dakota, USA. Sci Total Environ 447:32–45. https://doi.org/10.1016/j.scitotenv.2013.01.011Liu J, Rich K, Zheng C (2008) Sustainability analysis of groundwater resources in a coastal aquifer. Alabama Environ Geol 54(1):43–52. https://doi.org/10.1007/s00254-007-0791-xLoáiciga HA, Pingel TJ, Garcia ES (2012) Sea water intrusion by sea-level rise: scenarios for the 21st century. Groundwater 50(1):37–47. https://doi.org/10.1111/j.1745-6584.2011.00800.xLuoma S, Okkonen J, Korkka-Niemi K (2017) Comparison of the AVI, modified SINTACS and GALDIT vulnerability methods under future climate-change scenarios for a shallow low-lying coastal aquifer in southern Finland. Hydrogeol J 25(1):203–222. https://doi.org/10.1007/s10040-016-1471-2Mabrouk M, Jonoski A, Oude HP, Essink G, Uhlenbrook S (2018) Impacts of sea level rise and groundwater extraction scenarios on fresh groundwater resources in the Nile Delta Governorates. Egypt. Water 10(11):1690. https://doi.org/10.3390/w10111690McEvoy J, Wilder M (2012) Discourse and desalination: potential impacts of proposed climate change adaptation interventions in the Arizona-Sonora border region. Glob Environ Change 22(2012):353–363. https://doi.org/10.1016/j.gloenvcha.2011.11.001Petty K (2011) The effects of land cover, climate, and urbanization on groundwater resources in Dauphin Island. Dissertation, Auburn University, AlabamaPulido-Velazquez D, Garrote L, Andreu J, Martin-Carrasco FJ, Iglesias A (2011) A methodology to diagnose the effect of climate change and to identify adaptive strategies to reduce its impacts in conjunctive-use systems at basin scale. J Hydrol 405:110–122. https://doi.org/10.1016/j.jhydrol.2011.05.014Pulido-Velazquez D, Renau-Pruñonosa A, Llopis-Albert C, Morell I, Collados-Lara AJ, Senent-Aparicio J, Baena-Ruiz L (2018) Integrated assessment of future potential global change scenarios and their hydrological impacts in coastal aquifers—a new tool to analyse management alternatives in the Plana Oropesa-Torreblanca aquifer. Hydrol Earth Syst Sci 22(5):3053. https://doi.org/10.5194/hess-22-3053-2018Ranjan SP, Kazama S, Sawamoto M (2006) Effects of climate and land use changes on groundwater resources in coastal aquifers. J Environ Manage 80(1):25–35. https://doi.org/10.1016/j.jenvman.2005.08.008Rasmussen P, Sonnenborg TO, Goncear G, Hinsby K (2013) Assessing impacts of climate change, SLR, and drainage canals on saltwater intrusion to coastal aquifer. Hydrol Earth Syst Sci 17:421–443. https://doi.org/10.5194/hess-17-421-2013Renau-Pruñonosa A, Morell I, Pulido-Velazquez D (2016) A methodology to analyse and assess pumping management strategies in coastal aquifers to avoid degradation due to seawater intrusion problems. Water Resour Manage 30(13):4823–4837. https://doi.org/10.1007/s11269-016-1455-yRobins NS, Jones HK, Ellis J (1999) An aquifer management case study—the chalk of the English South Downs. Water Resour Manage 13(3):205–218. https://doi.org/10.1023/A:1008101727356Romanazzi A, Gentile F, Polemio M (2015) Modelling and management of a Mediterranean karstic coastal aquifer under the effects of seawater intrusion and climate change. Environ Earth Sci 74(1):115–128. https://doi.org/10.1007/s12665-015-4423-6Sola F, Vallejos A, Moreno L, López-Geta JA, Pulido-Bosch A (2013) Identification of hydrogeochemical process linked to marine intrusion induced by pumping of a semi-confined Mediterranean coastal aquifer. Int J Environ Sci Technol 10(1):63–76. https://doi.org/10.1007/s13762-012-0087-xTrinh LT, Nguyen G, Vu H, Van Der Steen P, Lens RNL (2012) Climate change adaptation indicators to assess wastewater management and reuse options in the Mekong Delta. Vietnam Water Resour Manag 27(5):1175–1191. https://doi.org/10.1007/s11269-012-0227-6Van Pham H, Lee SI (2015) Assessment of seawater intrusion potential from sea-level rise and groundwater extraction in a coastal aquifer. Desalination Water Treat 53(9):2324–2338. https://doi.org/10.1080/19443994.2014.971617Water Framework Directive (WFD) (2000) Directiva 2000/60/CE del Parlamento Europeo y del Consejo de 23 de Octubre de 2000. Diario Oficial de las Comunidades Europeas de 22/12/2000. L 327/1–327/32Werner AD, Simmons CT (2009) Impact of sea-level rise on sea water intrusion in coastal aquifers. Groundwater 47(2):197–204. https://doi.org/10.1111/j.1745-6584.2008.00535.

    Framework to Assess Natural Chloride Background in Coastal Aquifers Affected by Seawater Intrusion in Eastern Spain

    Full text link
    [EN] The protection of groundwater resources in coastal aquifers is an increasingly important issue worldwide. To establish threshold values and remediation objectives, it is essential to know the natural background concentrations of relevant ions in groundwater. The rationale is to define the Natural Background Level (NBL) of chemical species determined by atmospheric and lithological forces. In many coastal aquifers, this evaluation worsens since atmospheric and lithological salinity combines with many other anthropogenic sources of salinity, including exogenous salinity induced by seawater intrusion (SWI). This paper presents a combination of six well-known statistical techniques and a new methodology (i.e., SITE index) in eight GWBs affected by SWI in Eastern Spain. The chloride ion was the selected conservative chemical specie to assess the qualitative status due to the variable SWI affection. The Natural Chloride Background (NCB) obtained from these methodologies at the GWB scale was compared with regional NCB data calculated with the Atmospheric Chloride Mass Balance (CMB) method in Continental Spain. The CMB method provides atmospherically derived NCB data that are not influenced by SWI or anthropogenic activities or lithological forces. This external evaluation can be considered the atmospheric fraction of NCB, which serves as a regional criterion to validate the more detailed statistical methodologies applied at the GWB scale. As a result, a conceptualization of NCB is obtained by means of a range of values between 115 mg L-1 and 261 mg L-1 in the studied coastal GWBs affected by SWI in Eastern Spain.This research was partially funded by the projects GeoE.171.008-TACTIC and Ge-oE.171.008-HOVER from the EU Horizon 2020 R+D program, the project 101086497 from the EU Horizon-CL6-2022-Governance-01 R+D program, and the project SIGLO-PROAN (PID2021-128021OB-I00 and RTI2018-101397-B-I00) from the Spanish Ministry of Science and Innovation.Grima-Olmedo, J.; Ballesteros-Navarro, B.; Pulido-Velázquez, D.; Renau-Pruñonosa, A.; Javier Alcalá, F.; Llopis-Albert, C.; Jiménez-Gavilán, P.... (2023). Framework to Assess Natural Chloride Background in Coastal Aquifers Affected by Seawater Intrusion in Eastern Spain. Water. 15(15):1-17. https://doi.org/10.3390/w15152728117151
    corecore