13 research outputs found

    Tensionless Superstrings: View from the Worldsheet

    Get PDF
    In this brief note, we show that the residual symmetries that arise in the analysis of the tensionless superstrings in the equivalent of the conformal gauge is (a trivial extension of) the recently discovered 3d Super Bondi-Metzner-Sachs algebra, discussed in the context of asymptotic symmetries of 3d Supergravity in flat-spacetimes. This helps us uncover a limiting approach to the construction of the tensionless superstring from the point of view of the worldsheet, analogous to the one we had adopted earlier for the closed tensionless bosonic string.Comment: 23 page

    Inhomogeneous Tensionless Superstrings

    Full text link
    We construct a novel tensionless limit of Superstring theory that realises the Inhomogeneous Super Galilean Conformal Algebra (SGCAI_I) as the residual symmetries in the analogue of the conformal gauge, as opposed to previous constructions of the tensionless superstring, where a smaller symmetry algebra called the Homogeneous SGCA emerged as the residual gauge symmetry on the worldsheet. We obtain various features of the new tensionless theory intrinsically as well as from a systematic limit of the corresponding features of the tensile theory. We discuss why it is desirable and also natural to work with this new tensionless limit and the larger algebra.Comment: 34 page

    Tensionless Strings from Worldsheet Symmetries

    Get PDF
    We revisit the construction of the tensionless limit of closed bosonic string theory in the covariant formulation in the light of Galilean conformal symmetry that rises as the residual gauge symmetry on the tensionless worldsheet. We relate the analysis of the fundamentally tensionless theory to the tensionless limit that is viewed as a contraction of worldsheet coordinates. Analysis of the quantum regime uncovers interesting physics. The degrees of freedom that appear in the tensionless string are fundamentally different from the usual string states. Through a Bogoliubov transformation on the worldsheet, we link the tensionless vacuum to the usual tensile vacuum. As an application, we show that our analysis can be used to understand physics of strings at very high temperatures and propose that these new degrees of freedom are naturally connected with the long-string picture of the Hagedorn phase of free string theory. We also show that tensionless closed strings behave like open strings.Comment: 40 pages; v2: references added, minor text edit

    BMS3 (Carrollian) field theories from a bound in the coupling of current-current deformations of CFT2

    No full text
    Abstract Two types of Carrollian field theories are shown to emerge from finite current-current deformations of toroidal CFT2’s when the deformation coupling is precisely fixed, up to a sign. In both cases the energy and momentum densities fulfill the BMS3 algebra. Applying these results to the bosonic string, one finds that the electric-like deformation (positive coupling) reduces to the standard tensionless string. The magnetic-like deformation (negative coupling) yields to a new theory, still being relativistic, devoid of tension and endowed with an “inner Carrollian structure”. Classical solutions describe a sort of “self-interacting null particle” moving along generic null curves of the original background metric, not necessarily geodesics. This magnetic-like theory is also shown to be recovered from inequivalent limits in the tension of the bosonic string. Electric- and magnetic-like deformations of toroidal CFT2’s can be seen to correspond to limiting cases of continuous exactly marginal (trivial) deformations spanned by an SO(1,1) automorphism of the current algebra. Thus, the absolute value of the current-current deformation coupling is shown to be bounded. When the bound saturates, the deformation ceases to be exactly marginal, but still retains the full conformal symmetry in two alternative ultrarelativistic regimes

    Tensionless superstrings: View from the worldsheet

    No full text
    In this brief note, we show that the residual symmetries that arise in the analysis of the tensionless superstrings in the equivalent of the conformal gauge is (a trivial extension of) the recently discovered 3d Super Bondi-Metzner-Sachs algebra, discussed in the context of asymptotic symmetries of 3d Supergravity in flat-spacetimes. This helps us uncover a limiting approach to the construction of the tensionless superstring from the point of view of the worldsheet, analogous to the one we had adopted earlier for the closed tensionless bosonic string
    corecore