114 research outputs found
A He-gas Cooled, Stationary Granular Target
In the CERN approach to the design of a neutrino factory, the repetition frequency of the proton beam is high enough to consider stationary solid targets as a viable solution for multi-MW beams. The target consists of high density tantalum spheres of 2 mm diameter which can efficiently be cooled by passing a high mass flow He-gas stream through the voids between the Ta-granules. Very small thermal shocks and stresses will arise in this fine grained structure due to the relatively long burst of 3.3 ms from the SPL-proton linac. In a quadruple target system where each target receives only one quarter of the total beam power of 4 MW, conservative temperature levels and adequate lifetimes of the target are estimated in its very high radiation environment. A conceptual design of the integration of the target into the magnetic horn-pion-collector is presented
Response of Solid and Liquid Targets to High Power Proton Beams for Neutrino Factories
The response of solid and liquid targets to rapid heating by the incident proton beam is assessed in a classical way, among other things by solving the wave equation under linear conditions and in cylindrical symmetry. This study provides bench mark values and allows to identify critical issues and limiting factors which can help to guide further investigations with more sophisticated means
OSQAR Revised Program
This Memorandum is a follow-up of the 2009 OSQAR Status Report highlighting the revised program with an emphasis for the next two years
Performance Evaluation and Quality Assurance Management during the Series Power Tests of LHC Main Lattice Magnets
Within the LHC magnet program a series production of superconducting dipoles and quadrupoles has recently been completed in industry and all magnets were cold tested at CERN. The main features of these magnets are: two-in-one structure, 56 mm aperture, two layer coils wound from 15.1 mm wide Nb-Ti cables, and all-polyimide insulation. This paper reviews the process of the power test quality assurance and performance evaluation, which was applied during the LHC magnet series tests. The main test results of magnets tested in both supercritical and superfluid helium, including the quench training, the conductor performance, the magnet protection efficiency and the electrical integrity are presented and discussed in terms of the design parameters and the requirements of the LHC project
Investigation of the Periodic Magnetic Field Modulation Inside Apertures of LHC Superconducting Dipole Models
The windings of high-field accelerator magnets are usually made of Rutherford-type superconducting cables. The magnetic field distribution along the axis of such magnets exhibits a pronounced periodic modulation with a wavelength equal to the twist pitch length of the cable used in the winding. Such an effect, resulting from quasi-persistent currents, was investigated with a Hall probe array inserted inside the aperture of 1-metre long LHC superconducting dipole models. The amplitude and the time dependence of this periodic field oscillation have been studied as a function of the transport current history. The impact on the magnet stability of the non-uniform current redistribution producing such a field modulation is discussed
Investigation of the Periodic Magnetic Field Modulation in LHC Superconducting Dipoles
The windings of high-field accelerator magnets are usually made of Rutherford-type superconducting cables. The magnetic field distribution along the axis of such magnets exhibits a periodic modulation with a wavelength equal to the twist pitch length of the cable used in the winding. This effect, resulting from quasi-persistent currents, was investigated with a Hall probes array inserted inside the aperture of the LHC superconducting dipoles, both in short models and full-scale prototypes. The amplitude and the time dependence of this periodic field oscillation have been studied as a function of the magnet current history. The origin and the impact on the LHC dipoles stability of the non-uniform current redistribution producing such a field modulation are discussed
Currents in, Forces on and Deformations/Displacements of the LHC Beam Screen Expected during a Magnet Quench
Due to the field asymmetry of the LHC dipoles, the magnetic field integral calculated from the centre of the aperture to the outside of the cold mass does not vanish. During a magnet quench this asymmetry generates an electromotive force and thus a current with a resultant lateral force on the beam screen. This induced force was observed indirectly when measuring the deformation of the beam screen cross-section during a quench using a precision displacement transducer, which will be described. The transducer (based on optical gratings) was developed specially to study the beam screen deformation in cryogenic environments and high magnetic fields. The results of the measurements are compared to calculations and to direct measurements of the induced voltage along the current path. An estimation of the forces exerted on the cold bore by the beam screen and of the actual current induced in the beam screen will be given
Performance of the LHC Final Design, Full-Scale Superconducting Dipole Prototypes
Within the LHC magnet program, a series of six, final design, full-scale superconducting dipole prototypes are presently being built in industry and tested at CERN. The main features of these magnets are: two-in-one structure, 56 mm aperture, six-block two layer coils wound from 15.1 mm wide graded NbTi cables, and all-polyimide insulation. This paper reviews the main test results of magnets tested to day at 4.2 K and 1.8 K. The results of the quench training, conductor performance, magnet protection, sensitivity to ramp rate and field quality are presented and discussed in terms of the design parameters and the aims of the full scale dipole prototype program
- …