25 research outputs found

    Improved information on astrophysical S-factor for the 10B(p,α0)7Be reaction using the Trojan Horse method

    Get PDF
    The 10B(p,α0)7Be reaction has been studied by applying the Trojan Horse method to the 2H(10B,α0 7Be)n reaction. The bare-nucleus astrophysical S(E)-factor in absolute units was extracted in a wide energy range, from 2.2 MeV to 3 keV and normalized to the direct experimental data, thus allowing determination of the electron screening potential for which a value of Ue=391±74 eV was obtained

    Measurement of sub threshold resonance contributions to fusion reactions: the case of the 13C(α, n)16O astrophysical neutron source

    Get PDF
    The 13C(α, n)16O reaction is the neutron source for the main component of the s-process. It is is active inside the helium-burning shell of asymptotic giant branch stars, at temperatures ≲ 108 K. In this temperature region, corresponding to an energy interval of 140 − 230 keV, the 13C(α, n)16O cross section is dominated by the −3 keV sub-threshold resonance due to the 6.356 MeV level in 17O. Direct measurements could not establish its contribution owing to the Coulomb barrier between interacting nuclei, strongly reducing the cross section at astrophysical energies. Similarly, indirect measurements and extrapolations yielded inconsistent results, calling for further investigations. The Trojan Horse Method was applied to the 13C(6Li, n16O)d quasi-free reaction to access the low as well as the negative energy region of the 13C(α, n)16O reaction. By using the generalized R-matrix approach, the asymptotic normalization coefficient (C̃17O(1/2+)α13C)2 of the 6.356 MeV level was deduced. For the first time, the Trojan Horse Method and the asymptotic normalization coefficient were used in synergy. Our indirect approach lead to (C̃17O(1/2+)α13C)2 = 7.7−1.5+1.6 fm−1, slightly larger than the values in the literature, determining a 13C(α, n)16O reaction rate slightly larger than the one in the literature at temperatures lower than 108 K, with enhanced accuracy

    Measurement of the 13C(α, n)16O reaction at astrophysical energies using the Trojan Horse Method. Focus on the -3 keV sub-threshold resonance

    Get PDF
    Most of the nuclei in the mass range 90 ≲ A ≲ 208 are produced through the so-called s-process, namely through a series of neutron capture reactions on seed nuclei followed by β-decays. The 13C(α, n)16O reaction is the neutron source for the main component of the s-process. It is active inside the helium-burning shell of asymptotic giant branch stars, at temperatures ≲ 108 K, corresponding to an energy interval of 140 − 230 keV. In this region, the astrophysical S(E)-factor is dominated by the −3 keV sub-threshold resonance due to the 6.356 MeV level in 17O. Direct measurements could not soundly establish its contribution owing to the cross section suppression at astrophysical energies determined by the Coulomb barrier between interacting nuclei. Indirect measurements and extrapolations yielded inconsistent results, calling for further investigations. The Trojan Horse Method turns out to be very suited for the study of the 13C(α, n)16O reaction as it allows us to access the low as well as the negative energy re- gion, in particular in the case of resonance reactions. We have applied the Trojan HorseMethod to the 13C(6Li, n16O)d quasi-free reaction. By using the modified R-matrix approach, the asymptotic normalization coefficient (C˜α13 C17O(1/2+))2(C~α13C17O(1/2+))2{\left( {\tilde C_{{\alpha ^{13}}{\rm{C}}}^{17{\rm{O(1/}}{{\rm{2}}^{\rm{ + }}}{\rm{)}}}} \right)^2} of the 6.356 MeV level has been deduced as well as the n-partial width, allowing to attain an unprecedented accuracy for the 13C(α, n)16O astrophysical factor. A preliminary analysis of a partial data set has lead to (C˜α13C17O(1/2+))2 = 6.7−0.6+0.9 fm−1,(C~α13C17O(1/2+))2 = 6.7−0.6+0.9 fm−1,{\left( {\tilde C_{{\alpha ^{13}}{\rm{C}}}^{17{\rm{O(1/}}{{\rm{2}}^{\rm{ + }}}{\rm{)}}}} \right)^2}\, = \,6.7_{ - 0.6}^{ + 0.9}\,{\rm{f}}{{\rm{m}}^{ - 1}}, slightly larger than the values in the literature, determining a 13C(α, n)16O reaction rate in agreement with the most results in the literature at ∼ 108 K, with enhanced accuracy thanks to this innovative approach

    A new high-precision upper limit of direct α-decays from the Hoyle state in 12C

    Get PDF
    International audience; The Hoyle state in 12C(Ex = 7.654MeV) is characterized by a pronounced 3α cluster configuration. It is involved in the so-called 3α process in stars, that is responsible of 12C nucleosynthesis. We studied the decay path of the Hoyle state by using the 14N(d, α2)12C(7.654) reaction at 10.5MeV incident energy. We found, with a precision higher of a factor 5 than any other previous experiment, an almost total absence of direct decays by-passing the ground state of 8Be. A new upper limit of such a decay width is placed at 0.043% (95% C.L.). Astrophysical 3α process reaction rate calculations have to be consequently revised

    Improved information on astrophysical S-factor for the

    Full text link
    The 10B(p,α0)7Be reaction has been studied by applying the Trojan Horse method to the 2H(10B,α0 7Be)n reaction. The bare-nucleus astrophysical S(E)-factor in absolute units was extracted in a wide energy range, from 2.2 MeV to 3 keV and normalized to the direct experimental data, thus allowing determination of the electron screening potential for which a value of Ue=391±74 eV was obtained

    The

    Full text link
    A measurement of the 12C(14N,α20Ne)2H and 12C(14N,p23Na)2Hreactions has been performed at a 14N beam energy of 30.0 MeV. The experiment aims to explore the extent to which contributing 24Mg excited states can be populated in the quasi-free reaction off the deuteron in 14N. In particular, the 24Mg excitation region explored in the measurement plays a key role in stellar carbon burning whose cross section is commonly determined by extrapolating high-energy fusion data. From preliminary results, α and proton channels are clearly identified. In particular, ground and first excited states of 20Ne and 23Na play a major role

    Measurement of sub threshold resonance contributions to fusion reactions: the case of the 13C(α, n)16O astrophysical neutron source

    Full text link
    The 13C(α, n)16O reaction is the neutron source for the main component of the s-process. It is is active inside the helium-burning shell of asymptotic giant branch stars, at temperatures ≲ 108 K. In this temperature region, corresponding to an energy interval of 140 − 230 keV, the 13C(α, n)16O cross section is dominated by the −3 keV sub-threshold resonance due to the 6.356 MeV level in 17O. Direct measurements could not establish its contribution owing to the Coulomb barrier between interacting nuclei, strongly reducing the cross section at astrophysical energies. Similarly, indirect measurements and extrapolations yielded inconsistent results, calling for further investigations. The Trojan Horse Method was applied to the 13C(6Li, n16O)d quasi-free reaction to access the low as well as the negative energy region of the 13C(α, n)16O reaction. By using the generalized R-matrix approach, the asymptotic normalization coefficient (C̃17O(1/2+)α13C)2 of the 6.356 MeV level was deduced. For the first time, the Trojan Horse Method and the asymptotic normalization coefficient were used in synergy. Our indirect approach lead to (C̃17O(1/2+)α13C)2 = 7.7−1.5+1.6 fm−1, slightly larger than the values in the literature, determining a 13C(α, n)16O reaction rate slightly larger than the one in the literature at temperatures lower than 108 K, with enhanced accuracy

    Measurement of the

    Full text link
    Most of the nuclei in the mass range 90 ≲ A ≲ 208 are produced through the so-called s-process, namely through a series of neutron capture reactions on seed nuclei followed by β-decays. The 13C(α, n)16O reaction is the neutron source for the main component of the s-process. It is active inside the helium-burning shell of asymptotic giant branch stars, at temperatures ≲ 108 K, corresponding to an energy interval of 140 − 230 keV. In this region, the astrophysical S(E)-factor is dominated by the −3 keV sub-threshold resonance due to the 6.356 MeV level in 17O. Direct measurements could not soundly establish its contribution owing to the cross section suppression at astrophysical energies determined by the Coulomb barrier between interacting nuclei. Indirect measurements and extrapolations yielded inconsistent results, calling for further investigations. The Trojan Horse Method turns out to be very suited for the study of the 13C(α, n)16O reaction as it allows us to access the low as well as the negative energy re- gion, in particular in the case of resonance reactions. We have applied the Trojan HorseMethod to the 13C(6Li, n16O)d quasi-free reaction. By using the modified R-matrix approach, the asymptotic normalization coefficient (C~α13C17O(1/2+))2{\left( {\tilde C_{{\alpha ^{13}}{\rm{C}}}^{17{\rm{O(1/}}{{\rm{2}}^{\rm{ + }}}{\rm{)}}}} \right)^2} of the 6.356 MeV level has been deduced as well as the n-partial width, allowing to attain an unprecedented accuracy for the 13C(α, n)16O astrophysical factor. A preliminary analysis of a partial data set has lead to (C~α13C17O(1/2+))2 = 6.7−0.6+0.9 fm−1,{\left( {\tilde C_{{\alpha ^{13}}{\rm{C}}}^{17{\rm{O(1/}}{{\rm{2}}^{\rm{ + }}}{\rm{)}}}} \right)^2}\, = \,6.7_{ - 0.6}^{ + 0.9}\,{\rm{f}}{{\rm{m}}^{ - 1}}, slightly larger than the values in the literature, determining a 13C(α, n)16O reaction rate in agreement with the most results in the literature at ∼ 108 K, with enhanced accuracy thanks to this innovative approach
    corecore