298 research outputs found
Carbonate factory of Pietra di Finale coastal wedge (Miocene): the unusual abundance of stylasterids (Cnidaria, Hydrozoa)
This work focuses on the carbonate factories constituting the Pietra di Finale Fm cropping out in the Ligurian Alps. This unit constituted a mixed carbonate-siliciclastic coastal wedge developed during the Middle Miocene. The carbonate factories characterizing the coastal wedge of the Pietra di Finale clearly differ from those of the coastal mixed systems and carbonate platforms developing during the Miocene elsewhere in the Mediterranean area. Here, in the Ligurian Alps, the euphotic carbonate factory does not show any evidence of seagrass meadows and coral bioconstructions. Zooxanthellate corals are present only as skeletal debris associated with abundant stylasterids. In the mesophotic and oligophotic zones, the typical oligophotic biota of red algae and larger benthic foraminifers are strongly reduced. The coastal wedge of the Pietra di Finale shows an unusual abundance of stylasterids, classically interpreted as deep-water biota. However, in this example, the absence of low-energy textures and other skeletal components suggest a shallow-water origin, probably in the eu- or mesophotic zone. The stylasterids colonized the hard substrates available and were successively removed and resedimented to form the skeletal fraction of the coastal wedge of the Pietra di Finale. The abundance of stylasterids is restricted to particular and limited situations in the Miocene of the Mediterranean, thus suggesting that their abnormal development is controlled by local rather than global factors
Molecular Big Data in Sports Sciences: State-of-Art and Future Prospects of OMICS-Based Sports Sciences
Together with environment and experience (that is to say, diet and training), the biological and genetic make-up of an athlete plays a major role in exercise physiology. Sports genomics has shown, indeed, that some DNA single nucleotide polymorphisms (SNPs) can be associated with athlete performance and level (such as elite/world-class athletic status), having an impact on physical activity behavior, endurance, strength, power, speed, flexibility, energetic expenditure, neuromuscular coordination, metabolic and cardio-respiratory fitness, among others, as well as with psychological traits. Athletic phenotype is complex and depends on the combination of different traits and characteristics: as such, it requires a \u201ccomplex science,\u201d like that of metadata and multi-OMICS profiles. Several projects and trials (like ELITE, GAMES, Gene SMART, GENESIS, and POWERGENE) are aimed at discovering genomics-based biomarkers with an adequate predictive power. Sports genomics could enable to optimize and maximize physical performance, as well as it could predict the risk of sports-related injuries. Exercise has a profound impact on proteome too. Proteomics can assess both from a qualitative and quantitative point of view the modifications induced by training. Recently, scholars have assessed the epigenetics changes in athletes. Summarizing, the different omics specialties seem to converge in a unique approach, termed sportomics or athlomics and defined as a \u201cholistic and top-down,\u201d \u201cnon-hypothesis-driven research on an individual\u2019s metabolite changes during sports and exercise\u201d (the Athlome Project Consortium and the Santorini Declaration) Not only sportomics includes metabonomics/metabolomics, but relying on the athlete\u2019s biological passport or profile, it would enable the systematic study of sports-induced changes and effects at any level (genome, transcriptome, proteome, etc.). However, the wealth of data is so huge and massive and heterogenous that new computational algorithms and protocols are needed, more computational power is required as well as new strategies for properly and effectively combining and integrating data
Nabiximols effect on blood pressure and heart rate in post-stroke patients of a randomized controlled study
Background: Cannabinoids may be useful to treat pain, epilepsy and spasticity, although they may bear an increased risk of cardiovascular events. This study aims to evaluate the cardiovascular safety of nabiximols, a cannabis-based drug, in patients with spasticity following stroke, thus presenting an increased cardiovascular risk. Methods: This is an ancillary study stemming from the SativexStroke trial: a randomized double-blind, placebo-controlled, crossover study aimed at assessing the effect of nabiximols on post-stroke spasticity. Patients were treated with nabiximols oromucosal spray or placebo and assessed before and after two phases of 1-month duration each. Only the phase with the active treatment was considered for each patient who completed the study. The average values of blood pressure (diastolic, systolic, differential) and heart rate from the first 5 days of the phase (lowest nabiximols dosage) were compared to the average values recorded during the last 5 days at the end of the phase (highest nabiximols dosage). Baseline comparisons between gender, stroke type and affected side and correlation between age and blood pressure and heart rate were performed. The study was registered with the EudraCT number 2016-001034-10. Results: Thirty-four patients completed the study and were included in the analysis. Thirty-one were taking antihypertensive drugs and, among these, 12 were taking beta-blockers. During the study, no arrhythmic events were recorded, blood pressure and heart rate did not show pathological fluctuations, and no cardiovascular or cerebrovascular events occurred. At baseline blood pressure and heart rate were comparable concerning gender, stroke type and affected side. A significant direct correlation emerged between differential blood pressure and age and an inverse correlation between diastolic blood pressure and age. No correlation emerged between systolic blood pressure or heart rate and age. Blood pressure and heart rate did not change during nabiximols treatment compared to the baseline condition. Conclusion: This ancillary study adds evidence that, in patients who already underwent a cerebrovascular accident, nabiximols does not determine significant blood pressure and heart rate variation or cardiovascular complications. These data support the cardiovascular safety of nabiximols, encouraging more extensive studies involving cannabinoids characterized by slow absorption rates
The effect of verbal encouragement on performance and muscle fatigue in swimming
Background and Objectives: Verbal encouragement (VE) can be used to enhance performance in several sports, even though no studies have been conducted among swimmers and only a few effects have been reported in elite athletes. Besides influencing motor performance, VE is also known to enhance the physical load, thus potentially increasing the probability of developing fatigue. With this in mind, this study aimed to explore the effects of VE in swimmers in order to fill in the knowledge gap concerning the aquatic environment. Materials and Methods: Each athlete swam a maximal 200 m freestyle trial under two different conditions: one trial with VE and the other without VE. The two main outcome measures were: (1) performance velocity (m/s); and (2) muscle fatigue, investigated by means of surface electromyography. Sixty swimmers were recruited, aged 18.63 ± 3.46 years (median 18 years), 28 men (47%), and 32 women (53%), with 7.03 ± 3.9 years of experience. Results: With VE, performance significantly improved in the swim trial (p < 0.001, effect size (ES) −0.95, large). When breaking the results down into the first half (first (0–100 m) vs. the second half (100–200 m)), the ES was large in the first part (−1.11), indicating an improvement in performance. This worsened, however, in the second part of the trial (ES 0.63). In the multivariate analysis, years of experience were found to be a significant predictor of the change in overall performance (p = 0.011). There was a significant increase in muscle fatigue induced by VE, overall, and during the second half, but not during the first half of the trial. Conclusions: The present study indicates that VE during a middle-distance event (200 m) increases performance most in swimmers with little experience. However, it has a negative impact on fatigue
Young para-athletes display more hedonic well-being than people with disabilities not taking part in competitive sports: insights from a multi-country survey
Hedonic well-being relates to how individuals experience and rate their lives. People with disabilities due to their pathology may more frequently suffer from anxiety and depressive disorders than their able-bodied counterparts. Sports participation is an essential way to cope with disability. On the other hand, compared with their able-bodied peers, para-athletes undergo a unique series of stressors. Little is known in terms of hedonic well-being in this specific population. We present the results of a multi-country survey of self-perceived hedonic well-being by para-athletes of different sports disciplines and a control group (disabled individuals not playing competitive sports), using the "Psychological General Well-Being Index" (PGWBI). We included 1,208 participants, aged 17.39 years, 58.4% male, 41.6% female, and 70.3% para-athletes. Para-athletes exhibited higher well-being than disabled people, for all domains of the PGWBI scale. The nature of disability/impairment was significant, with those with acquired disability reporting lower well-being. Those taking part in wheelchair basketball, para-athletics, and para-swimming competitions had a higher likelihood of reporting well-being, whereas those engaged in wheelchair rugby exhibited lower well-being compared with controls. This large-scale investigation can enable a better understanding of the self-perceived hedonic well-being of disabled people
Swimming and the human microbiome at the intersection of sports, clinical, and environmental sciences. A scoping review of the literature
The human microbiota is comprised of more than 10–100 trillion microbial taxa and symbiotic cells. Two major human sites that are host to microbial communities are the gut and the skin. Physical exercise has favorable effects on the structure of human microbiota and metabolite production in sedentary subjects. Recently, the concept of “athletic microbiome” has been introduced. To the best of our knowledge, there exists no review specifically addressing the potential role of microbiomics for swimmers, since each sports discipline requires a specific set of techniques, training protocols, and interactions with the athletic infrastructure/facility. Therefore, to fill in this gap, the present scoping review was undertaken. Four studies were included, three focusing on the gut microbiome, and one addressing the skin microbiome. It was found that several exercise-related variables, such as training volume/intensity, impact the athlete’s microbiome, and specifically the non-core/peripheral microbiome, in terms of its architecture/composition, richness, and diversity. Swimming-related power-/sprint- and endurance-oriented activities, acute bouts and chronic exercise, anaerobic/aerobic energy systems have a differential impact on the athlete’s microbiome. Therefore, their microbiome can be utilized for different purposes, including talent identification, monitoring the effects of training methodologies, and devising ad hoc conditioning protocols, including dietary supplementation. Microbiomics can be exploited also for clinical purposes, assessing the effects of exposure to swimming pools and developing potential pharmacological strategies to counteract the insurgence of skin infections/inflammation, including acne. In conclusion, microbiomics appears to be a promising tool, even though current research is still limited, warranting, as such, further studies
Planetary sleep medicine. Studying sleep at the individual, population, and planetary level
Circadian rhythms are a series of endogenous autonomous oscillators that are generated by the molecular circadian clock which coordinates and synchronizes internal time with the external environment in a 24-h daily cycle (that can also be shorter or longer than 24 h). Besides daily rhythms, there exist as well other biological rhythms that have different time scales, including seasonal and annual rhythms. Circadian and other biological rhythms deeply permeate human life, at any level, spanning from the molecular, subcellular, cellular, tissue, and organismal level to environmental exposures, and behavioral lifestyles. Humans are immersed in what has been called the “circadian landscape,“ with circadian rhythms being highly pervasive and ubiquitous, and affecting every ecosystem on the planet, from plants to insects, fishes, birds, mammals, and other animals. Anthropogenic behaviors have been producing a cascading and compounding series of effects, including detrimental impacts on human health. However, the effects of climate change on sleep have been relatively overlooked. In the present narrative review paper, we wanted to offer a way to re-read/re-think sleep medicine from a planetary health perspective. Climate change, through a complex series of either direct or indirect mechanisms, including (i) pollution- and poor air quality-induced oxygen saturation variability/hypoxia, (ii) changes in light conditions and increases in the nighttime, (iii) fluctuating temperatures, warmer values, and heat due to extreme weather, and (iv) psychological distress imposed by disasters (like floods, wildfires, droughts, hurricanes, and infectious outbreaks by emerging and reemerging pathogens) may contribute to inducing mismatches between internal time and external environment, and disrupting sleep, causing poor sleep quantity and quality and sleep disorders, such as insomnia, and sleep-related breathing issues, among others. Climate change will generate relevant costs and impact more vulnerable populations in underserved areas, thus widening already existing global geographic, age-, sex-, and gender-related inequalities
Not all forms of muscle hypertonia worsen with fatigue. A pilot study in para swimmers
In hypertonic muscles of patients with upper motor neuron syndrome (UMNS), investigation with surface electromyography (EMG) with the muscle in a shortened position and during passive muscle stretch allows to identify two patterns underlying hypertonia: spasticity and spastic dystonia. We recently observed in Para swimmers that the effect of fatigue on hypertonia can be different from subject to subject. Our goal was, therefore, to understand whether this divergent behavior may depend on the specific EMG pattern underlying hypertonia. We investigated eight UMNS Para swimmers (five men, mean age 23.25 ± 3.28 years), affected by cerebral palsy, who presented muscle hypertonia of knee flexors and extensors. Muscle tone was rated using the Modified Ashworth Scale (MAS). EMG patterns were investigated in rectus femoris (RF) and biceps femoris (BF) before and after two fatiguing motor tasks of increasing intensity. Before the fatiguing tasks, two subjects (#2 and 7) had spasticity and one subject (#5) had spastic dystonia in both RF and BF. Two subjects (#3 and 4) showed spasticity in RF and spastic dystonia in BF, whereas one subject (#1) had spasticity in RF and no EMG activity in BF. The remaining two subjects (#6 and 8) had spastic dystonia in RF and no EMG activity in BF. In all the 16 examined muscles, these EMG patterns persisted after the fatiguing tasks. Spastic dystonia increased (p < 0.05), while spasticity did not change (p > 0.05). MAS scores increased only in the muscles affected by spastic dystonia. Among the phenomena possibly underlying hypertonia, only spastic dystonia is fatigue-dependent. Technical staff and medical classifiers should be aware of this specificity, because, in athletes with spastic dystonia, intense and prolonged motor activity could negatively affect competitive performance, creating a situation of unfairness among Para athletes belonging to the same sports class
Evolution and biogeography of the <i>Zanclea</i>-Scleractinia symbiosis
Scleractinian corals provide habitats for a broad variety of cryptofauna, which in turn may contribute to the overall functioning of coral symbiomes. Among these invertebrates, hydrozoans belonging to the genus Zanclea represent an increasingly known and ecologically important group of coral symbionts. In this study, we analysed 321 Zanclea colonies associated with 31 coral genera collected from 11 localities across the Indo-Pacific and Caribbean regions, and used a multi-disciplinary approach to shed light on the evolution and biogeography of the group. Overall, we found high genetic diversity of hydrozoans that spans nine clades corresponding to cryptic or pseudo-cryptic species. All but two clades are associated with one or two coral genera belonging to the Complex clade, whereas the remaining ones are generalists associated with both Complex and Robust corals. Despite the observed specificity patterns, no congruence between Zanclea and coral phylogenies was observed, suggesting a lack of coevolutionary events. Most Zanclea clades have a wide distribution across the Indo-Pacific, including a generalist group extending also into the Caribbean, while two host-specific clades are possibly found exclusively in the Red Sea, confirming the importance of this peripheral region as an endemicity hotspot. Ancestral state reconstruction suggests that the most recent common ancestor of all extant coral-associated Zanclea was a specialist species with a perisarc, occurring in what is now known as the Indo-Pacific. Ultimately, a mixture of geography- and host-related diversification processes is likely responsible for the observed enigmatic phylogenetic structure of coral-associated Zanclea
- …