40 research outputs found

    An Engineered IFNγ-Antibody Fusion Protein with Improved Tumor-Homing Properties

    Full text link
    Interferon-gamma (IFNγ) is one of the central cytokines produced by the innate and adaptive immune systems. IFNγ directly favors tumor growth control by enhancing the immunogenicity of tumor cells, induces IP-10 secretion facilitating (CXCR3+) immune cell infiltration, and can prime macrophages to an M1-like phenotype inducing proinflammatory cytokine release. We had previously reported that the targeted delivery of IFNγ to neoplastic lesions may be limited by the trapping of IFNγ-based products by cognate receptors found in different organs. Here we describe a novel fusion protein consisting of the L19 antibody, specific to the alternatively spliced extra-domain B of fibronectin (EDB), fused to a variant of IFNγ with reduced affinity to its cognate receptor. The product (named L19-IFNγ KRG) selectively localized to tumors in mice, showed favorable pharmacokinetic profiles in monkeys and regained biological activity upon antigen binding. The fusion protein was investigated in two murine models of cancer, both as monotherapy and in combination with therapeutic modalities which are frequently used for cancer therapy. L19-IFNγ KRG induced tumor growth retardation and increased the intratumoral concentration of T cells and NK cells in combination with anti-PD-1

    Generation of a novel fully human non-superagonistic anti-CD28 antibody with efficient and safe T-cell co-stimulation properties

    Get PDF
    Antibody-based therapeutics represent an important class of biopharmaceuticals in cancer immunotherapy. CD3 bispecific T-cell engagers activate cytotoxic T-cells and have shown remarkable clinical outcomes against several hematological malignancies. The absence of a costimulatory signal through CD28 typically leads to insufficient T-cell activation and early exhaustion. The combination of CD3 and CD28 targeting products offers an attractive strategy to boost T-cell activity. However, the development of CD28-targeting therapies ceased after TeGenero's Phase 1 trial in 2006 evaluating a superagonistic anti-CD28 antibody (TGN1412) resulted in severe life-threatening side effects. Here, we describe the generation of a novel fully human anti-CD28 antibody termed "E1P2" using phage display technology. E1P2 bound to human and mouse CD28 as shown by flow cytometry on primary human and mouse T-cells. Epitope mapping revealed a conformational binding epitope for E1P2 close to the apex of CD28, similar to its natural ligand and unlike the lateral epitope of TGN1412. E1P2, in contrast to TGN1412, showed no signs of in vitro superagonistic properties on human peripheral blood mononuclear cells (PBMCs) using different healthy donors. Importantly, an in vivo safety study in humanized NSG mice using E1P2, in direct comparison and contrast to TGN1412, did not cause cytokine release syndrome. In an in vitro activity assay using human PBMCs, the combination of E1P2 with CD3 bispecific antibodies enhanced tumor cell killing and T-cell proliferation. Collectively, these data demonstrate the therapeutic potential of E1P2 to improve the activity of T-cell receptor/CD3 activating constructs in targeted immunotherapeutic approaches against cancer or infectious diseases

    Generation and in vivo validation of an IL-12 fusion protein based on a novel anti-human FAP monoclonal antibody

    Full text link
    BACKGROUND In this study, we describe the generation of a fully human monoclonal antibody (named '7NP2') targeting human fibroblast activation protein (FAP), an antigen expressed in the microenvironment of different types of solid neoplasms. METHODS 7NP2 was isolated from a synthetic antibody phage display library and was improved by one round of mutagenesis-based affinity maturation. The tumor recognition properties of the antibody were validated by immunofluorescence procedures performed on cancer biopsies from human patients. A fusion protein consisting of the 7NP2 antibody linked to interleukin (IL)-12 was generated and the anticancer activity of the murine surrogate product (named mIL12-7NP2) was evaluated in mouse models. Furthermore, the safety of the fully human product (named IL12-7NP2) was evaluated in Cynomolgus monkeys. RESULTS Biodistribution analysis in tumor-bearing mice confirmed the ability of the product to selectively localize to solid tumors while sparing healthy organs. Encouraged by these results, therapy studies were conducted in vivo, showing a potent antitumor activity in immunocompetent and immunodeficient mouse models of cancer, both as single agent and in combination with immune checkpoint inhibitors. The fully human product was tolerated when administered to non-human primates. CONCLUSIONS The results obtained in this work provided a rationale for future clinical translation activities using IL12-7NP2

    An emergency clinical pathway for stroke patients – results of a cluster randomised trial (isrctn41456865)

    Get PDF
    BACKGROUND: Emergency Clinical Pathways (ECP) for stroke have never been tested in randomized controlled trials (RCTs). OBJECTIVE: To evaluate the effectiveness of an ECP for stroke patients in Latium (Italy) emergency system. METHODS: cluster-RCT designed to compare stroke patient referrals by Emergency Medical Service (EMS) and Emergency Room (ER) health professionals trained in the ECP, with those of non-trained EMS and ER controls. Primary outcome measure was the proportion of eligible (aged /= 80 and symptom onset /= 6 hours) stroke patients referred to a stroke unit (SU). Intention to treat (ITT) and per-protocol (PP) analyses were performed, and risk ratios (RR) adjusted by age, gender and area, were calculated. RESULTS: 2656 patients in the intervention arm and 2239 in the control arm required assistance; 78.3% of the former and 80.6% of the latter were admitted to hospitals, and respectively 74.8% and 78.3% were confirmed strokes. Of the eligible confirmed strokes, 106/434 (24.4%) in the intervention arm and 43/328 (13.1%) in the control arm were referred to the SU in the ITT analysis (RR = 2.01; 95% CI: 0.79-4.00), and respectively 105/243 (43.2%) and 43/311 (13.8%) in the PP analysis (RR = 3.21; 95%CI: 1.62-4.98). Of patients suitable for i.v. thrombolysis, 15/175 (8.6%) in the intervention arm and 2/115 (1.7%) in the control arm received thrombolysis (p = 0.02) in the ITT analysis, and respectively 15/99 (15.1%) and 2/107 (1.9%)(p = 0.001) in the PP analysis. CONCLUSION: Our data suggest potenti efficiency and feasibility of an ECP. The integration of EMS and ERs with SU networks for organised acute stroke care is feasible and may ameliorate the quality of care for stroke patients. TRIAL REGISTRATION: Current Controlled Trials (ISRCTN41456865)

    Immunotherapy with immunocytokines and PD-1 blockade enhances the anticancer activity of small molecule-drug conjugates targeting carbonic anhydrase IX

    Full text link
    Small molecule-drug conjugates (SMDCs) represent an alternative to conventional anti-tumor chemotherapeutic agents, with the potential to improve the therapeutic window of cytotoxic payloads through active delivery at the site of the disease. In this article we describe novel combination therapies consisting of anti-Carbonic Anhydrase IX SMDCs combined with different immunomodulatory products. The therapeutic effect of the SMDCs was potentiated by combination with PD-1 blockade and with tumor-homing antibody-cytokine fusions in mouse models of renal cell carcinoma and colorectal cancer. The combination with L19-IL12, a fusion protein specific to the alternatively-spliced EDB domain of fibronectin containing the murine interleukin-12 moiety, was active also against large established tumors. Analysis of the microscopic structures of healthy organs performed three months after tumor eradication confirmed absence of pathological abnormalities in the healthy kidney, liver, lung, stomach and intestine. Our findings may be of clinical significance as they provide motivation for the development of combinations based on small molecule-drug conjugates and immunotherapy for the treatment of renal cell carcinoma and of hypoxic tumors

    Comparative evaluation of bolus and fractionated administration modalities for two antibody-cytokine fusions in immunocompetent tumor-bearing mice

    Full text link
    Antibody-cytokine fusion proteins are being considered as biopharmaceuticals for cancer immunotherapy. Tumor-homing cytokine fusions typically display an improved therapeutic activity compared to the corresponding unmodified cytokine products, but toxicity profiles at equivalent doses are similar, since side effects are mainly driven by the cytokine concentration in blood. In order to explore avenues to harness the therapeutic potential of antibody-cytokine fusions while decreasing potential toxicity, we compared bolus and fractionated administration modalities for two tumor-targeting antibody-cytokine fusion proteins based on human interleukin-2 (IL2) and murine tumor necrosis factor (TNF) (i.e., L19-hIL2 and L19-mTNF) in two murine immunocompetent mouse models of cancer (F9 and C51). A comparative quantitative biodistribution analysis with radio-labeled protein preparations revealed that a fractionated administration of L19-hIL2 could deliver comparable product doses to the tumor with decreased product concentration in blood and normal organs, compared to bolus injection. By contrast, L19-mTNF (a product that causes a selective vascular shutdown in the tumor) accumulated most efficiently after bolus injection. Fractionated schedules allowed the safe administration of a cumulative dose of L19-mTNF, which was 2.5-times higher than the lethal dose for bolus injection. Dose fractionation led to a prolonged tumor growth inhibition for F9 teratocarcinomas, but not for C51 colorectal tumors, which responded best to bolus injection. Thus, dose fractionation may have different outcomes for the same antibody-cytokine product in different biological contexts
    corecore