23 research outputs found

    A comparison of the radiosensitisation ability of 22 different element metal oxide nanoparticles using clinical megavoltage X-rays

    Get PDF
    Background: A wide range of nanoparticles (NPs), composed of different elements and their compounds, are being developed by several groups as possible radiosensitisers, with some already in clinical trials. However, no systematic experimental survey of the clinical X-ray radiosensitising potential of different element nanoparticles has been made. Here, we directly compare the irradiation-induced (10 Gy of 6-MV X-ray photon) production of hydroxyl radicals, superoxide anion radicals and singlet oxygen in aqueous solutions of the following metal oxide nanoparticles: Al2O3, SiO2, Sc2O3, TiO2, V2O5, Cr2O3, MnO2, Fe3O4, CoO, NiO, CuO, ZnO, ZrO2, MoO3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Tb4O7, Dy2O3, Er2O3 and HfO2. We also examine DNA damage due to these NPs in unirradiated and irradiated conditions. Results: Without any X-rays, several NPs produced more radicals than water alone. Thus, V2O5 NPs produced around 5-times more hydroxyl radicals and superoxide radicals. MnO2 NPs produced around 10-times more superoxide anions and Tb4O7 produced around 3-times more singlet oxygen. Lanthanides produce fewer hydroxyl radicals than water. Following irradiation, V2O5 NPs produced nearly 10-times more hydroxyl radicals than water. Changes in radical concentrations were determined by subtracting unirradiated values from irradiated values. These were then compared with irradiation-induced changes in water only. Irradiation-specific increases in hydroxyl radical were seen with most NPs, but these were only significantly above the values of water for V2O5, while the Lanthanides showed irradiation-specific decreases in hydroxyl radical, compared to water. Only TiO2 showed a trend of irradiation-specific increase in superoxides, while V2O5, MnO2, CoO, CuO, MoO3 and Tb4O7 all demonstrated significant irradiation-specific decreases in superoxide, compared to water. No irradiation-specific increases in singlet oxygen were seen, but V2O5, NiO, CuO, MoO3 and the lanthanides demonstrated irradiation-specific decreases in singlet oxygen, compared to water. MoO3 and CuO produced DNA damage in the absence of radiation, while the highest irradiation-specific DNA damage was observed with CuO. In contrast, MnO2, Fe3O4 and CoO were slightly protective against irradiation-induced DNA damage. Conclusions: Beyond identifying promising metal oxide NP radiosensitisers and radioprotectors, our broad comparisons reveal unexpected differences that suggest the surface chemistry of NP radiosensitisers is an important criterion for their success

    7th Drug hypersensitivity meeting: part two

    Get PDF
    No abstract availabl

    Importance of pharmacogenetics in the treatment of children with attention deficit hyperactive disorder: a case report

    No full text
    Teerarat Tan-kam,1 Chutamanee Suthisisang,2 Chosita Pavasuthipaisit,1 Penkhae Limsila,1 Apichaya Puangpetch,3 Chonlaphat Sukasem31Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital, Department of Mental Health Services, Ministry of Public Health, 2Department of Pharmacology, Faculty of Pharmacy, Mahidol University, 3Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, ThailandAbstract: This case report highlights the importance of pharmacogenetic testing in the treatment of attention deficit hyperactive disorder (ADHD). A 6-year-old boy diagnosed with ADHD was prescribed methylphenidate 5 mg twice daily (7 am and noon) and the family was compliant with administration of this medication. On the first day of treatment, the patient had an adverse reaction, becoming disobedient, more mischievous, erratic, resistant to discipline, would not go to sleep until midnight, and had a poor appetite. The All-In-One PGX (All-In-One Pharmacogenetics for Antipsychotics test for CYP2D6, CYP2C19, and CYP2C9) was performed using microarray-based and real-time polymerase chain reaction techniques. The genotype of our patient was identified to be CYP2D6*2/*10, with isoforms of the enzyme consistent with a predicted cytochrome P450 2D6 intermediate metabolizer phenotype. Consequently, the physician adjusted the methylphenidate dose to 2.5 mg once daily in the morning. At this dosage, the patient had a good response without any further adverse reactions. Pharmacogenetic testing should be included in the management plan for ADHD. In this case, cooperation between the medical team and the patients' relatives was key to successful treatment.Keywords: attention deficit hyperactive disorder, pharmacogenomics, CYP2D6, adverse drug reactions, dose adjustment, intermediate metabolize

    CYP2C19 polymorphisms in the Thai population and the clinical response to clopidogrel in patients with atherothrombotic-risk factors

    No full text
    Chonlaphat Sukasem,1 Ramaimon Tunthong,2 Montri Chamnanphon,1 Siwalee Santon,1 Thawinee Jantararoungtong,1 Napatrupron Koomdee,1 Santirhat Prommas,1 Apichaya Puangpetch,1 Prin Vathesatogkit21Division of Pharmacogenetics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; 2Division of Cardiology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, ThailandAbstract: Genetic variation in the cytochrome P450 2C19 (CYP2C19) gene has been documented gradually as the determinant conversion and variability in the antiplatelet effect of clopidogrel. The aims of this study were to determine the prevalence of clinically relevant allele variants (CYP2C19*2, CYP2C19*3, and CYP2C19*17) in a Thai study population, and finally determine whether the allele distributes and predicts metabolic phenotypes in clopidogrel treated patients. A total of 1,051 Thai patients participated in this study. Genotypes for CYP2C19 polymorphisms were detected by the microarray-based technique. Furthermore, results of genotyping and platelet aggregation in 96 cardiovascular disease patients on 75 mg clopidogrel maintenance daily dose therapy also were analyzed. Among 1,051 samples, the allele frequencies of CYP2C19 *1/*1, *1/*2, *1/*3, *2/*2, *2/*3, and *1/*17 were found in 428 (40.72%), 369 (35.10%), 72 (6.85%), 77 (7.32%), 59 (5.61%), and 45 (4.30%) of the patients, respectively. Homozygous CYP2C19 *3/*3 was found in one patient (0.10%). Therefore, 40.72% of the patients were predicted as extensive metabolizers, 41.95% as intermediate metabolizers, 13.03% as poor metabolizers, and 4.30% as ultra-rapid metabolizers. Among 96 patients, the frequency of poor metabolizers was significantly higher in the clopidogrel non-responder group than in the responder group (36.0% and 15.5%, respectively, P = 0.03). CYP2C19*1/*17 was observed in responders (n = 2; 2.8%). As a result, CYP2C19 variants were associated with clopidogrel non-responders. However, there is a need for further elucidation of the clinical importance and use of this finding to make firm and cost-effective recommendations for drug treatment in the future.Keywords: CYP2C19 polymorphisms, Thai population, clopidogrel, responders, non-responder

    Hyperprolactinemia in Thai children and adolescents with autism spectrum disorder treated with risperidone

    No full text
    Yaowaluck Hongkaew,1,2 Nattawat Ngamsamut,3 Apichaya Puangpetch,1,2 Natchaya Vanwong,1,2 Pornpen Srisawasdi,4 Montri Chamnanphon,1,2 Bhunnada Chamkrachchangpada,3 Teerarat Tan-kam,3 Penkhae Limsila,3 Chonlaphat Sukasem1,2 1Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, 2Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Mahidol University, 3Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital, Department of Mental Health Services, Ministry of Public Health, 4Division of Clinical Chemistry, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand Abstract: Hyperprolactinemia is a common adverse effect observed in children with autism spectrum disorder (ASD) during pharmacotherapy with risperidone. The main aim of this study was to investigate important clinical factors influencing the prolactin response in risperidone-treated Thai ASD. A total of 147 children and adolescents (127 males and 20 females) aged 3–19 years with ASD received risperidone treatment (0.10–6.00 mg/day) for up to 158 weeks. Prolactin levels were measured by chemiluminescence immunoassay. The clinical data of patients collected from medical records – age, weight, height, body mass index, dose of risperidone, duration of treatment, and drug-use pattern – were recorded. Hyperprolactinemia was observed in 66 of 147 (44.90%) subjects. Median prolactin level at the high doses (24.00, interquartile range [IQR] 14.30–29.20) of risperidone was significantly found to be higher than at the recommended (16.20, IQR 10.65–22.30) and low (11.70, IQR 7.51–16.50) doses of risperidone. There was no relationship between prolactin levels and duration of risperidone treatment. Dose-dependence is identified as a main factor associated with hyperprolactinemia in Thai children and adolescents with ASD treated with risperidone. This study suggests that risperidone treatment causes prolactin elevations and the effects of risperidone on prolactin are probably dose-related in pediatric patients. Keywords: prolactin level, risperidone, autism spectrum disorders, Thai, hyperprolactinemi
    corecore