3 research outputs found

    The socio-spatial design of community and governance: Interdisciplinary urban design in China

    Get PDF
    This book proposes a new interdisciplinary understanding of urban design in China based on a study of the transformative effects of socio-spatial design and planning on communities and their governance. This is framed by an examination of the social projects, spaces, and realities that have shaped three contexts critical to the understanding of urban design problems in China: the histories of “collective forms” and “collective spaces”, such as that of the urban danwei (work-unit), which inform current community building and planning; socio-spatial changes in urban and rural development; and disparate practices of “spatialised governmentality”. These contexts and an attendant transformation from planning to design and from government to governance, define the current urban design challenges found in the dominant urban xiaoqu (small district) and shequ (community) development model. Examining the histories, transformations, and practices that have shaped socio-spatial epistemologies and experiences in China – including a specific sense of community and place that is rather based on a concrete “collective” than abstract “public” space and underpinned by socialised governance – this book brings together a diverse range of observations, thoughts, analyses, and projects by urban researchers and practitioners. Thereby discussing emerging interdisciplinary urban design practices in China, this book offers a valuable resource for all academics, practitioners, and stakeholders with an interest in socio-spatial design and development

    Impact of Straw Incorporation on the Physicochemical Profile and Fungal Ecology of Saline–Alkaline Soil

    No full text
    Improving the soil structure and fertility of saline–alkali land is a major issue in establishing a sustainable agro-ecosystem. To explore the potential of different straw returning in improving saline–alkaline land, we utilized native saline–alkaline soil (SCK), wheat straw-returned saline–alkaline soil (SXM) and rapeseed straw-returned saline–alkaline soil (SYC) as our research objects. Soil physicochemical properties, fungal community structure and diversity of saline–alkaline soils were investigated in different treatments at 0–10 cm, 10–20 cm and 20–30 cm soil depths. The results showed that SXM and SYC reduced soil pH and total salinity but increased soil organic matter, alkali-hydrolyzable nitrogen, available phosphorus, total potassium, etc., and the enhancement effect of SYC was more significant. The total salinity of the 0–10 cm SCK soil layer was much higher than that of the 10–30 cm soil layers. Fungal diversity and abundance were similar in different soil layers in the same treatment. SXM and SYC soil had higher fungal diversity and abundance than SCK. At the genus level, Plectosphaerella, Mortierella and Ascomycota were the dominant groups of fungal communities in SXM and SYC. The fungal diversity and abundance in SXM and SYC soils were higher than in SCK soils. Correlation network analysis of fungal communities with environmental factors showed that organic matter, alkali-hydrolyzable nitrogen and available phosphorus were the main environmental factors for the structural composition of fungal communities of Mortierella, Typhula, Wickerhamomyces, Trichosporon and Candida. In summary, straw returning to the field played an effective role in improving saline–alkaline land, improving soil fertility, affecting the structure and diversity of the fungal community and changing the interactions between microorganisms
    corecore