15 research outputs found

    High critical currents for dendrite penetration and voiding in potassium metal anode solid-state batteries

    Get PDF
    Potassium metal anode solid-state cells with a K-beta”-alumina ceramic electrolyte are found to have relatively high critical currents for dendrite penetration on charge of approximately 4.8 mA/cm2, and voiding on discharge of approximately 2.0 mA/cm2, at 20 °C under 2.5 MPa stack-pressure. These values are higher than generally reported in the literature under comparable conditions for Li and Na metal anode solid-state batteries. The higher values for potassium are attributed to its lower yield strength and its readiness to creep under relatively low stack-pressures. The high critical currents of potassium anode solid-state batteries help to confirm the importance of the metal anode mechanical properties in the mechanisms of dendrite penetration and voiding.</p

    The effect of volume change and stack pressure on solid‐state battery cathodes

    Get PDF
    Solid-state lithium batteries may provide increased energy density and improved safety compared with Li-ion technology. However, in a solid-state composite cathode, mechanical degradation due to repeated cathode volume changes during cycling may occur, which may be partially mitigated by applying a significant, but often impractical, uniaxial stack pressure. Herein, we compare the behavior of composite electrodes based on Li4Ti5O12 (LTO) (negligible volume change) and Nb2O5 (+4% expansion) cycled at different stack pressures. The initial LTO capacity and retention are not affected by pressure but for Nb2O5, they are significantly lower when a stack pressure of &lt;2 MPa is applied, due to inter-particle cracking and solid-solid contact loss because of cyclic volume changes. This work confirms the importance of cathode mechanical stability and the stack pressures for long-term cyclability for solid-state batteries. This suggests that low volume-change cathode materials or a proper buffer layer are required for solid-state batteries, especially at low stack pressures

    Influence of contouring the lithium metal/solid electrolyte interface on the critical current for dendrites

    Get PDF
    Contouring or structuring of the lithium/ceramic electrolyte interface and therefore increasing its surface area has been considered as a possible strategy to increase the charging current in solid-state batteries without lithium dendrite formation and short-circuit. By coupling together lithium deposition kinetics and the me chanics of lithium creep within calculations of the current distribution at the interface, and leveraging a model for lithium dendrite growth, we show that efforts to avoid dendrites on charging by increasing the interfacial surface area come with significant limitations associated with the topography of rough surfaces. These limitations are sufficiently severe such that it is very unlikely contouring could increase charging currents while avoiding dendrites and short-circuit to the levels required. For example, we show a sinusoidal surface topography can only raise the charging current before dendrites occur by approx. 50% over a flat interface

    Influence of contouring the lithium metal/solid electrolyte interface on the critical current for dendrites

    Get PDF
    Contouring or structuring of the lithium/ceramic electrolyte interface and therefore increasing its surface area has been considered as a possible strategy to increase the charging current in solid-state batteries without lithium dendrite formation and short-circuit. By coupling together lithium deposition kinetics and the me chanics of lithium creep within calculations of the current distribution at the interface, and leveraging a model for lithium dendrite growth, we show that efforts to avoid dendrites on charging by increasing the interfacial surface area come with significant limitations associated with the topography of rough surfaces. These limitations are sufficiently severe such that it is very unlikely contouring could increase charging currents while avoiding dendrites and short-circuit to the levels required. For example, we show a sinusoidal surface topography can only raise the charging current before dendrites occur by approx. 50% over a flat interface

    Decoupling, quantifying, and restoring aging-induced Zn-anode losses in rechargeable aqueous zinc batteries

    Get PDF
    The search for batteries beyond Li-ion that offer better performance, reliability, safety, and/or affordability has led researchers to explore a diverse array of candidates. The advantages of Zn-ion batteries reside in zinc’s relatively low reactivity, raising the prospect of a rechargeable battery with a simple aqueous electrolyte and a cheaper, safer option to the organic electrolytes that must be paired with reactive lithium. However, water still reacts with the zinc in corrosion reactions. These consume zinc, lowering the battery’s capacity, and generate gas that accumulates in the sealed cell. We diagnose the contribution of corrosion to performance decay in zinc batteries and reveal the critical role of gas accumulation in deactivating large sections of electrode, which cripples cell performance. Fortunately, electrodes can be reactivated by removal of the gas, demonstrating the importance of designing future cells that either prevent gas formation or facilitate its safe release

    Revealing the role of fluoride‐rich battery electrode interphases by operando transmission electron microscopy

    Get PDF
    The solid electrolyte interphase (SEI), a complex layer that forms over the surface of electrodes exposed to battery electrolyte, has a central influence on the structural evolution of the electrode during battery operation. For lithium metallic anodes, tailoring this SEI is regarded as one of the most effective avenues for ensuring consistent cycling behavior, and thus practical efficiencies. While fluoride-rich interphases in particular seem beneficial, how they alter the structural dynamics of lithium plating and stripping to promote efficiency remains only partly understood. Here, operando liquid-cell transmission electron microscopy is used to investigate the nanoscale structural evolution of lithium electrodeposition and dissolution at the electrode surface across fluoride-poor and fluoride-rich interphases. The in situ imaging of lithium cycling reveals that a fluoride-rich SEI yields a denser Li structure that is particularly amenable to uniform stripping, thus suppressing lithium detachment and isolation. By combination with quantitative composition analysis via mass spectrometry, it is identified that the fluoride-rich SEI suppresses overall lithium loss through drastically reducing the quantity of dead Li formation and preventing electrolyte decomposition. These findings highlight the importance of appropriately tailoring the SEI for facilitating consistent and uniform lithium dissolution, and its potent role in governing the plated lithium's structure

    The role of an elastic interphase in suppressing gas evolution and promoting uniform electroplating in sodium metal anodes †

    Get PDF
    Ether solvent based electrolytes exhibit excellent performance with sodium battery anodes, outperforming the carbonate electrolytes that are routinely used with the analogous lithium-ion battery. Uncovering the mechanisms that facilitate this high performance for ether electrolytes, and conversely diagnosing the causes of the poor cycling with carbonate electrolytes, is crucial for informing the design of optimized electrolytes that promote fully reversible sodium cycling. An important contributor to the performance difference has been suggested to be the enhanced elasticity of the ether-derived solid–electrolyte interphase (SEI) layer, however experimental demonstration of exactly how this translates to improving the microscopic dynamics of a cycled anode remain less explored. Here, we reveal how this more elastic SEI prevents gas evolution at the interface of the metal anode by employing operando electrochemical transmission electron microscopy (TEM) to image the cycled electrode–electrolyte interface in real time. The high spatial resolution of TEM imaging reveals the rapid formation of gas bubbles at the interface during sodium electrostripping in carbonate electrolyte, a phenomenon not observed for the higher performance ether electrolyte, which impedes complete Na stripping and causes the SEI to delaminate from the electrode. This non-conformal and inflexible SEI must thus continuously reform, leading to increased Na loss to SEI formation, as supported by mass spectrometry measurements. The more elastic ether interphase is better able to maintain conformality with the electrode, preventing gas formation and facilitating flat electroplating. Our work shows why an elastic and flexible interphase is important for achieving high performance sodium anodes

    Achieving ultra‐high rate planar and dendrite‐free zinc electroplating for aqueous zinc battery anodes

    Get PDF
    Despite being one of the most promising candidates for grid-level energy storage, practical aqueous zinc batteries are limited by dendrite formation, which leads to significantly compromised safety and cycling performance. In this study, by using single-crystal Zn-metal anodes, reversible electrodeposition of planar Zn with a high capacity of 8 mAh cm−2 can be achieved at an unprecedentedly high current density of 200 mA cm−2. This dendrite-free electrode is well maintained even after prolonged cycling (>1200 cycles at 50 mA cm−2). Such excellent electrochemical performance is due to single-crystal Zn suppressing the major sources of defect generation during electroplating and heavily favoring planar deposition morphologies. As so few defect sites form, including those that would normally be found along grain boundaries or to accommodate lattice mismatch, there is little opportunity for dendritic structures to nucleate, even under extreme plating rates. This scarcity of defects is in part due to perfect atomic-stitching between merging Zn islands, ensuring no defective shallow-angle grain boundaries are formed and thus removing a significant source of non-planar Zn nucleation. It is demonstrated that an ideal high-rate Zn anode should offer perfect lattice matching as this facilitates planar epitaxial Zn growth and minimizes the formation of any defective regions

    Current-density-dependent electroplating in Ca electrolytes : from globules to dendrites

    No full text
    Multivalent cation rechargeable batteries, including those based on Ca, Mg, Al, etc., have attracted considerable interest as candidates for beyond Li-ion batteries. Recent developments have realized promising electrolyte compositions for rechargeable Ca batteries; however, an in-depth understanding of the Ca plating and stripping behavior and the mechanisms by which adverse dendritic growth may occur remains underdeveloped. In this work, via in situ transmission electron microscopy, we have captured the real-time nucleation, growth, and dissolution of Ca and the formation of dead Ca and demonstrated the critical role of current density and the solid-electrolyte interphase layer in controlling the plating morphology. In particular, the interface was found to influence Ca deposition morphology and can lead to Ca dendrite growth under unexpected conditions. These observations allow us to propose a model explaining the preferred conditions for reversible and efficient Ca plating

    Interfaces between Ceramic and Polymer Electrolytes: A Comparison of Oxide and Sulfide Solid Electrolytes for Hybrid Solid-State Batteries

    No full text
    Hybrid solid-state batteries using a bilayer of ceramic and solid polymer electrolytes may offer advantages over using a single type of solid electrolyte alone. However, the impedance to Li+ transport across interfaces between different electrolytes can be high. It is important to determine the resistance to Li+ transport across these heteroionic interfaces, as well as to understand the underlying causes of these resistances; in particular, whether chemical interphase formation contributes to giving high resistances, as in the case of ceramic/liquid electrolyte interfaces. In this work, two ceramic electrolytes, Li3PS4 (LPS) and Li6.5La3Zr1.5Ta0.5O12 (LLZTO), were interfaced with the solid polymer electrolyte PEO10:LiTFSI and the interfacial resistances were determined by impedance spectroscopy. The LLZTO/polymer interfacial resistance was found to be prohibitively high but, in contrast, a low resistance was observed at the LPS/polymer interface that became negligible at a moderately elevated temperature of 50 &deg;C. Chemical characterization of the two interfaces was carried out, using depth-profiled X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry, to determine whether the interfacial resistance was correlated with the formation of an interphase. Interestingly, no interphase was observed at the higher resistance LLZTO/polymer interface, whereas LPS was observed to react with the polymer electrolyte to form an interphase
    corecore