78 research outputs found
GuiErBai: a potent inhibitor, exhibiting broadly antitumor effect against cervical cancer in vitro and in vivo
Introduction: Cervical cancer (CC) ranks as the fourth most prevalent malignant tumor among women worldwide, and is the fourth leading cause of cancer-related mortality. GuiErBai (GEB), a compound preparation developed by our research team, is derived from the ancient Chinese medicine of the Miao nationality and is comprised of podophyllotoxin (PTOX), imperatorin, isoimperatorin, and A. dahurica alkaloids. These individual components have demonstrated notable efficacy in tumor treatment. However, the specific anti-tumor effect of the compound Chinese medicine GEB in the context of CC has yet to be validated.Methods: HeLa and SiHa cell lines were utilized for in vitro experiments and treated with 5 mg/mL and 10 mg/mL GEB concentrations, respectively. The cell cycle changes after GEB treatment were assessed using flow cytometry. Transmission electron microscopy was employed to observe autophagic bodies and apoptotic bodies, while MDC staining evaluated the occurrence of autophagy. CCK-8 was used to observe the effect of GEB on cell proliferation, and Transwell assays assessed cell migration and invasion. Western blotting detected cell cycle and apoptosis-related protein expression, along with the expression level of autophagy-related protein LC3I/II. Changes in ROS and mitochondrial membrane potential in cervical cancer cells following GEB treatment were determined using ROS detection and mitochondrial membrane potential detection kits. For the in vivo experiment, a nude mouse model of cervical cancer transplantation based on HeLa cells was established. Experimental animals were divided into negative control, positive control, high-dose GEB (10 mg/mL), and low-dose GEB (5 mg/mL) groups.Results: In HeLa and SiHa cell lines, the G0/G1 phase of tumor cells significantly decreased (p < 0.001), while the G2/M phase increased notably (p < 0.001) following various GEB treatments. Electron microscopy showed GEB promoted apoptotic body and autophagosome formation in both cell lines. Compared to untreated HeLa and SiHa cells, GEB-treated cells exhibited significantly reduced caspase3 protein expression, and substantially increased autophagy-related protein LC3I/II expression. GEB treatment significantly reduced migration and invasion capabilities in both cell lines (p < 0.001), while ROS content and mitochondrial membrane potential were significantly elevated (p < 0.001). GEB effectively inhibited cervical cancer cell proliferation, with the optimal concentration being 10 mg/mL. A successful nude mouse model of cervical cancer transplantation was established using HeLa cells. Post-GEB treatment, the tumor volume and weight in nude mice significantly decreased (p < 0.001), with diminished expression of CD34, VEGF, and caspase3 proteins in tumor tissues.Discussion: GEB exhibits a robust antitumor effect against cervical cancer, both in vitro and in vivo, in a concentration-dependent manner, by regulating autophagy and apoptosis of tumor cells
A simulation study on the measurement of D0-D0bar mixing parameter y at BES-III
We established a method on measuring the \dzdzb mixing parameter for
BESIII experiment at the BEPCII collider. In this method, the doubly
tagged events, with one decays to
CP-eigenstates and the other decays semileptonically, are used to
reconstruct the signals. Since this analysis requires good separation,
a likelihood approach, which combines the , time of flight and the
electromagnetic shower detectors information, is used for particle
identification. We estimate the sensitivity of the measurement of to be
0.007 based on a fully simulated MC sample.Comment: 6 pages, 7 figure
Evidence for lunar tide effects in Earth’s plasmasphere
Tides are universal and affect spatially distributed systems, ranging from planetary to galactic scales. In the Earth–Moon system, effects caused by lunar tides were reported in the Earth’s crust, oceans, neutral gas-dominated atmosphere (including the ionosphere) and near-ground geomagnetic field. However, whether a lunar tide effect exists in the plasma-dominated regions has not been explored yet. Here we show evidence of a lunar tide-induced signal in the plasmasphere, the inner region of the magnetosphere, which is filled with cold plasma. We obtain these results by analysing variations in the plasmasphere’s boundary location over the past four decades from multisatellite observations. The signal possesses distinct diurnal (and monthly) periodicities, which are different from the semidiurnal (and semimonthly) variations dominant in the previously observed lunar tide effects in other regions. These results demonstrate the importance of lunar tidal effects in plasma-dominated regions, influencing understanding of the coupling between the Moon, atmosphere and magnetosphere system through gravity and electromagnetic forces. Furthermore, these findings may have implications for tidal interactions in other two-body celestial systems
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods
An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given
3D Printing of Polydiacetylene Photocomposite Materials: Two Wavelengths for Two Orthogonal Chemistries
Polydiacetylene (PDA) materials are appealing and gaining
increasing research interest due to their outstanding chromatic transition
and fluorescence enhancement effects upon exposure to various environmental
stimuli. However, despite the photomask method, there are very
few reports about the spatial controllable photopolymerization and
subsequent 3D printing of PDA until now. Herein, for the first time, we
reported the preparation of PDA photocomposite materials based on
polyacrylate through the strategy of dual-wavelength polymerization and
orthogonal chemistry. First, diacetylene (DA) monomers were homogeneously
dispersed in acrylate resin. Then a violet light emitting diode
(LED) (or laser diode) was used for the free radical polymerization of
polyacrylate. Finally, UV irradiation was utilized to induce the 1,4-topopolymerization of PDA, which could show a successive
blue to purple to red color transition in response to the gradient increment of temperature. Interestingly, instead of photomasks,
we applied a 3D printing approach directly to this composite material and fabricated some macroscopic stereo patterns, which
also illustrated thermochromic properties. This novel kind of functional photocomposite material would demonstrate a huge
application prospect in many potential fields, including colorimetric sensing, information encryption, anticounterfeiting, and so
on
Doped Semiconductor-Nanocrystal Emitters with Optimal Photoluminescence Decay Dynamics in Microsecond to Millisecond Range: Synthesis and Applications
[Image: see text] Transition metal doped semiconductor nanocrystals (d-dots) possess fundamentally different emission properties upon photo- or electroexcitation, which render them as unique emitters for special applications. However, in comparison with intrinsic semiconductor nanocrystals, the potential of d-dots has been barely realized, because many of their unique emission properties mostly rely on precise control of their photoluminescence (PL) decay dynamics. Results in this work revealed that it would be possible to obtain bright d-dots with nearly single-exponential PL decay dynamics. By tuning the number of Mn(2+) ions per dot from ∼500 to 20 in Mn(2+) doped ZnSe nanocrystals (Mn:ZnSe d-dots), the single-exponential PL decay lifetime was continuously tuned from ∼50 to 1000 μs. A synthetic scheme was further developed for uniform and epitaxial growth of thick ZnS shell, ∼7 monolayers. The resulting Mn:ZnSe/ZnS core/shell d-dots were found to be essential for necessary environmental durability of the PL properties, both steady-state and transient ones, for the d-dot emitters. These characteristics combined with intense absorption and high PL quantum yields (70 ± 5%) enabled greatly simplified schemes for various applications of PL lifetime multiplexing using Mn:ZnSe/ZnS core/shell d-dots
- …