15 research outputs found
Polychlorinated biphenyls (PCBs) alter DNA methylation and genomic integrity of sheep fetal cells in a simplified in vitro model of pregnancy exposure
Polychlorinated biphenyls (PCBs) are persistent organic pollutants ubiquitously detectable in the environment
and in the food chain. Prenatal exposure to PCBs negatively affects fetal development and produces long-term
detrimental effects on child health. The present study sought to evaluate the cytotoxic and genotoxic effects of
chronic PCB exposure on fetal cells during pregnancy. To this aim, sheep embryonic fibroblasts (SEF) and
amniocytes (SA) were cultured in vitro in the presence of low doses of PCBs for a period of 120 days, comparable
to the full term of ovine pregnancy. Cellular proliferation rates, global DNA methylation, chromosome integrity,
and markers of DNA damage were evaluated at different time points. Moreover, SEF treated with PCBs for
60 days were left untreated for one further month and then examined in order to evaluate the reversibility of
PCB-induced epigenetic defects. PCB-treated SEF were more sensitive than SA treated with PCBs, in terms of low
cell proliferation, and increased DNA damage and global DNA methylation, which were still detectable after
interruption of PCB treatment. These data indicate that chronic exposure of fetal cells to PCBs causes permanent
genomic and epigenetic instability, which may influence both prenatal and post-natal growth up to adulthood.
Our in vitro model offer a simple and controlled means of studying the effects of different contaminants on fetal
cells - one that could set the stage for targeted in vivo studies
Embryonic Diapause Is Conserved across Mammals
Embryonic diapause (ED) is a temporary arrest of embryo development and is characterized by delayed implantation in the uterus. ED occurs in blastocysts of less than 2% of mammalian species, including the mouse (Mus musculus). If ED were an evolutionarily conserved phenomenon, then it should be inducible in blastocysts of normally non-diapausing mammals, such as domestic species. To prove this hypothesis, we examined whether blastocysts from domestic sheep (Ovis aries) could enter into diapause following their transfer into mouse uteri in which diapause conditions were induced. Sheep blastocysts entered into diapause, as demonstrated by growth arrest, viability maintenance and their ED-specific pattern of gene expression. Seven days after transfer, diapausing ovine blastocysts were able to resume growth in vitro and, after transfer to surrogate ewe recipients, to develop into normal lambs. The finding that non-diapausing ovine embryos can enter into diapause implies that this phenomenon is phylogenetically conserved and not secondarily acquired by embryos of diapausing species. Our study questions the current model of independent evolution of ED in different mammalian orders
Embryonic diapause is conserved across mammals.
Embryonic diapause (ED) is a temporary arrest of embryo development and is characterized by delayed implantation in the uterus. ED occurs in blastocysts of less than 2% of mammalian species, including the mouse (Mus musculus). If ED were an evolutionarily conserved phenomenon, then it should be inducible in blastocysts of normally non-diapausing mammals, such as domestic species. To prove this hypothesis, we examined whether blastocysts from domestic sheep (Ovis aries) could enter into diapause following their transfer into mouse uteri in which diapause conditions were induced. Sheep blastocysts entered into diapause, as demonstrated by growth arrest, viability maintenance and their ED-specific pattern of gene expression. Seven days after transfer, diapausing ovine blastocysts were able to resume growth in vitro and, after transfer to surrogate ewe recipients, to develop into normal lambs. The finding that non-diapausing ovine embryos can enter into diapause implies that this phenomenon is phylogenetically conserved and not secondarily acquired by embryos of diapausing species. Our study questions the current model of independent evolution of ED in different mammalian orders.[...
Autophagy and apoptosis: parent-of-origin genome-dependent mechanisms of cellular self-destruction
Functional genomic imprinting is necessary for the transfer of maternal resources to mammalian embryos. Imprint-free embryos are unable to establish a viable placental vascular network necessary for the transfer of resources such as nutrients and oxygen. How the parental origin of inherited genes influences cellular response to resource limitation is currently not well understood. Because such limitations are initially realized by the placenta, we studied how maternal and paternal genomes influence the cellular self-destruction responses of this organ specifically. Here, we show that cellular autophagy is prevalent in androgenetic (i.e. having only a paternal genome) placentae, while apoptosis is prevalent in parthenogenetic (i.e. having only a maternal genome) placentae. Our findings indicate that the parental origin of inherited genes determines the placenta's cellular death pathway: autophagy for androgenotes and apoptosis for parthenogenotes. The difference in time of arrest between androgenotes and parthenogenotes can be attributed, at least in part, to their placentae's selective use of these two cell death pathways. We anticipate our findings to be a starting point for general studies on the parent-of-origin regulation of autophagy. Furthermore, our work opens the door to new studies on the involvement of autophagy in pathologies of pregnancy in which the restricted transfer of maternal resources is diagnosed
Impaired placental vasculogenesis compromises the growth of sheep embryos developed in vitro
To evaluate how assisted reproductive technologies (ART) affect vasculogenesis of the developing conceptus, we analyzed placental and fetal development of in vitro-produced (IVP) sheep embryos. Pregnancies produced by ART carry increased risk of low birth weight, though what causes this risk remains largely unknown. We recently reported that developmental arrest of sheep conceptuses obtained by ART is most pronounced when the cardiovascular system develops (Days 20-30 of development). A total of 86 IVP blastocysts (2-4 per ewe) were surgically transferred to 30 recipient sheep 6 days after estrus; 20 sheep were naturally mated (control). Conceptuses were recovered from sheep at Days 20, 22, 26, and 30 of gestation and morphologically evaluated. Then, the conceptuses and part of their placentae (chorion-allantois) were fixed for histological and immunohistochemical analysis and snap-frozen in liquid nitrogen for subsequent mRNA expression analysis. Results demonstrate that the cardiovascular systems of sheep IVP conceptuses were severely underdeveloped. Pericardial and placental hemorrhages were noted in a majority (5/7) of the dead embryos. In the surviving IVP embryos, the expression of angiogenetic factors was reduced at Day 20. The placental vessels were underdeveloped on Days 20 and 22 (P < 0.05), though placental vasculogenesis was successfully completed on subsequent days. However, low vessel number persisted at Days 26 and 30 (4.6 vs. 5.9 and 6.64 vs. 8.70 per field, respectively; P < 0.05) together with reduced vessel diameter at Day 26 (46.89 vs. 89.92 ÎĽm; P < 0.05). In vitro production of sheep embryos induced severely impaired vasculogenesis early in gestation. This may lead to developmental programing problems, such as intrauterine growth restriction of the fetus, resulting in long-term health consequences for the offspring, such as cardiovascular diseases
Experimental design of embryonic diapause (ED) induction in ovine blastocysts by transfer into ovariectomised pseudo-pregnant mice at 2.5 dpc.
<p>Following uterine flushing, diapausing ovine blastocysts were analyzed or transferred to foster ewes at day 6 after oestrus for full term development. The timing indicated in the diagram refers to embryos.</p