2 research outputs found

    Microsecond MD Simulations of the Plexin-B1 RBD: 2. N-H Probability Densities and Conformational Entropy in Ligand-Free, Rac1-Bound, and Dimer RBD

    No full text
    Orientational probability densities, Peq = exp(-u) (u, local potential), of bond-vectors in proteins provide information on structural flexibility. The related conformational entropy, Sk = -integral P-eq(ln P-eq)d omega - ln integral d omega, provides the entropic contribution to the free energy of the physical/biological process studied. We have developed a new method for deriving Peq and Sk from MD simulations, using the N-H bond as probe. Recently we used it to study the dimerization of the Rho GTPase binding domain of Plexin-B1 (RBD). Here we use it to study RBD binding to the small GTPase Rac1. In both cases 1 mu s MD simulations have been employed. The RBD has the ubiquitin fold with four mostly long loops. L3 is associated with GTPase binding, L4 with RBD dimerization, L2 participates in interdomain interactions, and L1 has not been associated with function. We find that RBD-Rac1 binding renders L1, L3, and L4 more rigid and the turns beta(2)/alpha(1) and alpha(2)/beta(5) more flexible. By comparison, RBD dimerization renders L4 more rigid, and the alpha-helices, the beta-strands, and L2 more flexible. The rigidity of L1 in RBDRAC is consistent with L1-L3 contacts seen in previous MD simulations. The analysis of the L3-loop reveals two states of distinct flexibility which we associate with involvement in slow conformational exchange processes differing in their rates. Overall, the N-H bonds make an unfavorable entropic contribution of (5.9 +/- 0.9) kJ/mol to the free energy of RBD-Rac1 binding; they were found to make a favorably contribution of (-7.0 +/- 0.7) kJ/mol to the free energy of RBD dimerization. In summary, the present study provides a new perspective on the impact of Rac1 binding and dimerization on the flexibility characteristics of the RBD. Further studies are stimulated by the results of this work

    Microsecond MD Simulations of the Plexin-B1 RBD: N-H Probability Density as Descriptor of Structural Dynamics, Dimerization-Related Conformational Entropy, and Transient Dimer Asymmetry

    No full text
    Amide-bond equilibrium probability density, Peq = exp(-u) (u, local potential), and associated conformational entropy, Sk = -∫Peq (ln Peq) dω ln ∫dω, are derived for the Rho GTPase binding domain of Plexin-B1 (RBD) as monomer and dimer from 1 μs MD simulations. The objective is to elucidate the effect of dimerization on the dynamic structure of the RBD. Dispersed (peaked) Peq functions indicate "flexibility"("rigidity"the respective concepts are used below in this context). The L1 and L3 loops are throughout highly flexible, the L2 loop and the secondary structure elements are generally rigid, and the L4 loop is flexible in the monomer and rigid in the dimer. Overall, many residues are more flexible in the dimer. These features, and their implications, are discussed. Unexpectedly, we find that monomer unit 1 of the dimer (in short, d1) is unusually flexible, whereas monomer unit 2 (in short, d2) is as rigid as the RBD monomer. This is revealed due to their engagement in slow-to-intermediate conformational exchange detected previously by 15N relaxation experiments. Such motions occur with rates on the order of 103-104 s-1 hence, they cannot be completely sampled over the course of 1 μs simulation. However, the extent to which rigid d2 is affected is small enough to enable physically relevant analysis. The entropy difference between d2 and the monomer yields an entropic contribution of -7 ± 0.7 kJ/mol to the free energy of RBD dimerization. In previous work aimed at similar objectives we used 50-100 ns MD simulations. Those results and the present result differ considerably. In summary, bond-vector Peq functions derived directly from long MD simulations are useful descriptors of protein structural dynamics and provide accurate conformational entropy. Within the scope of slow conformational exchange, they can be useful, even in the presence of incomplete sampling
    corecore