8 research outputs found

    Wettability and Stability of Naproxen, Ibuprofen and/or Cyclosporine A/Silica Delivery Systems

    No full text
    The characteristics of the wetting process of the porous surface of silica gel when penetrated by base liquids (water and n-octane), ethanol and stable drug systems (naproxen, ibuprofen and cyclosporine A), as biologically active substances in two ethanol concentrations, were determined by the wetting rate vs. time. The tests were performed for contacted and non-contacted plates with the vapours of the wetting liquid. Thin-layer liquid chromatography was used to determine the penetration rate of the SiO2-coated plates, taking into account the linear dependence consistent with the Washburn equation. Additionally, the changes in the adhesive tension ΔG were determined for the tested drugs. Drug stability tests were conducted using the dynamic light scattering technique and microelectrophoresis. The penetration time of the plate depends on the properties and structure of the wetting liquid droplets. The types of interactions (dispersive, electrostatic and hydrogen bonding) formed between the silanol surface groups of the silica gel and the groups contained in the adsorbate particles are also very important factors. The greater the impact force, the slower the wetting process due to the strong penetration of the liquid into the pores of the substrate. The characteristics of the drug wetting/stability process may contribute to the development of their new forms, creating delivery systems with greater efficiency and lower side effects

    Wettability and Stability of Naproxen, Ibuprofen and/or Cyclosporine A/Silica Delivery Systems

    No full text
    The characteristics of the wetting process of the porous surface of silica gel when penetrated by base liquids (water and n-octane), ethanol and stable drug systems (naproxen, ibuprofen and cyclosporine A), as biologically active substances in two ethanol concentrations, were determined by the wetting rate vs. time. The tests were performed for contacted and non-contacted plates with the vapours of the wetting liquid. Thin-layer liquid chromatography was used to determine the penetration rate of the SiO2-coated plates, taking into account the linear dependence consistent with the Washburn equation. Additionally, the changes in the adhesive tension ΔG were determined for the tested drugs. Drug stability tests were conducted using the dynamic light scattering technique and microelectrophoresis. The penetration time of the plate depends on the properties and structure of the wetting liquid droplets. The types of interactions (dispersive, electrostatic and hydrogen bonding) formed between the silanol surface groups of the silica gel and the groups contained in the adsorbate particles are also very important factors. The greater the impact force, the slower the wetting process due to the strong penetration of the liquid into the pores of the substrate. The characteristics of the drug wetting/stability process may contribute to the development of their new forms, creating delivery systems with greater efficiency and lower side effects

    Wetting properties of chitosan-modified and plasma-treated peek surfaces

    No full text
    In this paper, the wettability of chitosan/phospholipid (1,2-dipalmitoyl-sn-glycero-3-phosphocholine – DPPC), chitosan/lipid (cholesterol – Chol) and chitosan/protein (cyclosporine A – CsA) films on air plasma activated polyetheretherketone (PEEK) plates was studied. The layers were prepared using the solution spreading technique and their surface wetting properties were determined based on the measurements of the advancing and receding contact angles of water, formamide and diiodomethane. Moreover, based on the contact angle hysteresis model of Chibowski, values of total surface free energy were estimated. Significant changes in PEEK polarity were observed after plasma activation and modifications with Ch/DPPC, Ch/Chol and Ch/CsA layers. These molecules modulate the chitosan film surface by changing the type and magnitude of interactions, which is revealed in the values of surface free energy. These results may be important for the development and implementation of highly biocompatible bone substitution polymers coated with chitosan film with anti-fungal and anti-bactericidal properties. Those systems based on chitosan may also carry and release biologically active substances which could be relevant in the new generation of drug delivery systems

    Wettability of chitosan-modified and lipid/polypeptide-coated peek surfaces

    No full text
    In the present paper, cold plasma-activated and chitosan-coated polyetheretherketone (PEEK) was covered with thin films of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, cholesterol, cyclosporine A, and their mixtures using the Langmuir-Blodgett technique. The thermodynamic function, i.e., surface free energy, of those systems was determined based on the contact angle hysteresis (CAH) approach. This parameter seems to be essential in determination of cell adhesion to polymeric materials and molecular interactions with living tissues. The obtained results show that the wettability and surface free energy of PEEK can be changed depending on the composition of the coatin

    Wetting Properties of Polyetheretherketone Plasma Activated and Biocoated Surfaces

    No full text
    Polyetheretherketone (PEEK) biomaterial is a polymer which has been widely used since the early 90s as a material for human bone implant preparations. Nowadays it is increasingly used due to its high biocompatibility and easily modeling, as well as better mechanical properties and price compared to counterparts made of titanium or platinum alloys. In this paper, air low-temperature and pressure plasma was used to enhance PEEK adhesive properties as well as surface sterilization. On the activated polymeric carrier, biologically-active substances have been deposited with the Langmuir-Blodgett technique. Thereafter, the surface was characterized using optical profilometry, and wettability was examined by contact angle measuring. Next, the contact angle hysteresis (CAH) model was used to calculate the surface free energy of the modified surface of PEEK. The variations of wettability and surface free energy were observed depending on the deposited monolayer type and its components

    Characteristics of Hybrid Bioglass-Chitosan Coatings on the Plasma Activated PEEK Polymer

    No full text
    Polyetheretherketone (PEEK) is a biocompatible, chemically and physically stable radiolucent polymer that exhibits a similar elastic modulus to the normal human bone, making it an attractive orthopedic implant material. However, PEEK is biologically inert, preventing strong enough bonding with the surrounding bone tissue when implanted in vivo. Surface modification and composite preparation are the two main strategies for the improvement of the bioactivity of PEEK. In this study, the plasma activated PEEK surfaces with the embedded bioglass, chitosan, and bioglass-chitosan mixed layers applying from the solution dip-coating technique were investigated. The most prominent factors affecting the coating biocompatibility are strictly connected with the composition of its outer surface (its charge and functional groups), hydrophilic-hydrophobic character, wettability and surface free energy, and topography (size of pores/substructures, roughness, stiffness), as well as the personal characteristics of the patient. The obtained surfaces were examined in terms of wettability and surface-free energy changes. Additionally, FTIR (Fourier Transformation Infrared Spectrometry) and SIMS (Secondary Ion Mass Spectrometry) were applied to establish and control the coating composition. Simultaneously the structure of coatings was visualized with the aid of SEM (Scanning Electron Microscopy). Finally, the obtained systems were incubated in SBF (Simulated Body Fluid) to verify the modifications’ influence on the bioactivity/biocompatibility of the PEEK surface. Different structures with variable compositions, as well as changes of the wettability, were observed depending on the applied modification. In addition, the incubation in SBF suggested that the bioglass-chitosan ratio influenced the formation of apatite-like structures on the modified PEEK surfaces

    Cyclosporine CsA—The Physicochemical Characterization of Liposomal and Colloidal Systems

    No full text
    This paper presents an overview of the possibilities of testing various cyclosporine (CsA) formulations with an emphasis on parameters that may be key to improving the stability and biocompatibility. The feasibility of CsA colloidal systems for oral (injection) administration were investigated using different techniques and compared with similar investigations of other researchers. The chosen CsA systems were developed using dipalmitoylphosphocholine (DPPC) and/or cholesterol as a lipid matrix, stabilized with ethanol, with soybean oil or n-tetradecane as oil phase in emulsions, under natural pH, room and physiological temperature. Their integrity was found to be strictly dependent on the stabilizers. The highest CsA penetrability with the system containing phospholipid in the context of its interactions with lipid membranes was shown. Also, the bioavailability of CsA can be enhanced with the biopolymer antibacterial chitosan. This mini-review suggests the suitability of liposome/microemulsion as promising vehicles for CsA delivery. The most hopeful proved to be formulation with the smaller particle size facilitating absorption, but when safety is assessed, relying on just the particle size cannot be the only criteria. Reassumed, the CsA formulation stability known on the basis of the size and zeta potential measurements guarantees a decrease of the individual variations in the drug bioavailability, toxicity and minimizes rejection

    Shotgun Lipidomic Analysis for Differentiation of Niche Cold Pressed Oils

    No full text
    The fast-growing food industry is bringing significant number of new products to the market. To protect consumers’ health and rights, it is crucial that food control laboratories are able to ensure reliable quality testing, including product authentication and detection of adulterations. In our study, we applied a fast and eco-friendly method based on shotgun-lipidomic mass spectrometry for the authentication of niche edible oils. Comprehensive lipid profiles of camelina (CA), flax (FL) and hemp (HP) seed oils were obtained. With the aid of principal component analysis (PCA), it was possible to detect and distinguish each of them based on their lipid profiles. Lipidomic markers characteristic ofthe oils were also identified, which can be used as targets and expedite development of new multiplexed testing methods
    corecore