3 research outputs found

    Influence of marine vertebrates on organic matter, phosphorus and other chemical element levels in Antarctic soils

    Get PDF
    The presence of marine vertebrates in dense reproductive colonies and other aggregations contributes to the input of organic matter and nutrients into the local environment and it is believed that chemical elements are subsequently remobilized from the excreta of these animals. In this study, we investigated the influence of marine vertebrates on trace elements levels (As, Cd, Co, Cu, Fe, Li, Lu, Mg, Mn, Ni, Pb, Sb, Sc, Se, Sm, Sn, Sr, Tb, U and Zn), nutrient (total phosphorus) and soil organic matter (SOM) content from five locations with and without the presence of seabirds and marine mammals in Admiralty Bay, King George Island, South Shetland Islands, Antarctica. Soils were acid digested using a microwave digestion system, elements were quantified using inductively coupled plasma mass spectrometry and SOM was calculated by loss-on-ignition. The non-influenced and vertebrate-influenced soils had similar concentrations of most of the trace elements assessed, however, we observed a significant increase in SOM and P that was positively correlated with the concentrations of As, Cd, Se, Sr and Zn. Although marine vertebrates did not appear to significantly increase the elemental concentrations in the soils examined here, there is a clear evidence of selective enrichment indicating a zoogenic influence. Comparing our results with other studies, we conclude that soil elemental levels are result from an interplay between local geology, vertebrate diet and colony size. Further studies with increased sample size are required to obtain a better understanding of the influence of marine vertebrates on chemical element levels in Antarctic soils

    Iron Forms Fe(II) and Fe(III) Determination in Pre-Roman Iron Age Archaeological Pottery as a New Tool in Archaeometry

    No full text
    This article presents studies on iron speciation in the pottery obtained from archaeological sites. The determination of iron forms Fe(II) and Fe(III) has been provided by a very simple test that is available for routine analysis involving the technique of molecular absorption spectrophotometry (UV–Vis) in the acid leachable fraction of pottery. The elemental composition of the acid leachable fraction has been determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Additionally, the total concentration of the selected elements has been determined by X-ray fluorescence spectrometry with energy dispersion (EDXRF). The results of the iron forms’ determinations in archaeological pottery samples have been applied in the archaeometric studies on the potential recognition of the pottery production technology, definitely going beyond the traditional analysis of the pottery colour

    Numerical Analysis of the High Pressure MOVPE Upside-Down Reactor for GaN Growth

    No full text
    The present paper focuses on the high-pressure metal-organic vapor phase epitaxy (MOVPE) upside-down vertical reactor (where the inlet of cold gases is below a hot susceptor). This study aims to investigate thermo-kinetic phenomena taking place during the GaN (gallium nitride) growth process using trimethylgallium and ammonia at a pressure of above 2 bar. High pressure accelerates the growth process, but it results in poor thickness and quality in the obtained layers; hence, understanding the factors influencing non-uniformity is crucial. The present investigations have been conducted with the aid of ANSYS Fluent finite volume method commercial software. The obtained results confirm the possibility of increasing the growth rate by more than six times through increasing the pressure from 0.5 bar to 2.5 bar. The analysis shows which zones vortexes form in. Special attention should be paid to the transitional flow within the growth zone as well as the viewport. Furthermore, the normal reactor design cannot be used under the considered conditions, even for the lower pressure value of 0.5 bar, due to high turbulences
    corecore