63 research outputs found

    Neutral proteases of human polymorphonuclear granulocytes: putative mediators of pulmonary damage.

    Get PDF
    Tissue proteolytic enzymes are currently believed to be critical to the pathogenesis of panacinar emphysema. Polymorphonuclear leukocytes (Polys) have several enzymes including elastase and cathepsin G in their azurophil granules. They have collagenase in their specific granules. We have found that this collagenase is doubly latent. It has the lysosomal type of latency that depends on the impermeability of the unit membrane that surrounds each specific granule. In addition it has a latency that is converted to activity by proteolytic enzymes. The cathepsin G of the azurophil granule is a potent activator of this latent collagenase once the collagenase is released from its membrane dependent latency. Thus latency of enzymes, the nature of the latency and accessibility of the latent enzymes to activating mechanisms must all be taken into account in any analysis of their contribution to pathogenesis of local lung disease. Equally important is that fact that polys are not a prominent cellular component of normal lung. Polys must be attracted to the lung by chemotactic peptides. These peptides must be released by the interaction of inflammatory stimuli, such as smoke particles, with complement components or they must be provided by other sources. The hypothesis that lung damage in panacinar emphysema is mediated by polys and their proteases is attractive and suggestive evidence supporting this is available. However, more evidence that takes into full account the cell biology of the proteases any poly turnover in the lung are needed to extend the hypothesis and to form a rational basis for therapeutic and prophylactic measures

    A comparative study of frozen-section immunoperoxidase and flow cytometry for immunophenotypic analysis of lymph node biopsies.

    Get PDF
    Immunophenotyping by flow cytometry and frozen-section immunoperoxidase was compared on 21 consecutive lymph node biopsy specimens, of which a diagnosis of lymphoma was made for 11 specimens. Samples for flow cytometry were obtained by a fine-needle aspiration technique. Concordance between frozen-section immunoperoxidase and flow cytometry for all routine markers on all specimens ranged from 76 to 100%. In general, B-cell markers showed poorer concordance than T-cell markers, with kappa and lambda light chains having the poorest concordance, at 76% each. Flow cytometry was significantly more sensitive (90 versus 30%; P < 0.006) and had a significantly higher negative predictive value (100 versus 63%; P < 0.006) than frozen-section immunoperoxidase for demonstrating light-chain restriction. There was no significant difference in the specificities (100 versus 91%) or positive predictive values (100% each) between the two methods. Both methods demonstrated characteristic immunophenotypes for intermediate cell lymphomas, small lymphocytic lymphomas, and T-cell lymphoblastic lymphomas. Frozen-section immunoperoxidase and flow cytometry appear to be significantly concordant methods for immunophenotypic analysis of lymph node biopsies. Light-chain restriction is more readily demonstrated by flow cytometry than frozen-section immunoperoxidase. We believe that ex vivo fine-needle aspiration is a simple and reliable method of obtaining cell suspensions of lymph nodes for flow cytometry

    Suppression of local and systemic responses in streptococcal cell wall-induced acute inflammation of the air pouch by cyclosporine A. Comparison with the effects of two anti-inflammatory bis-benzimidazoles.

    Get PDF
    Injection of streptococcus group A cell wall-derived peptidoglycan polysaccharide into a subcutaneous air pouch causes local outpouring of neutrophils and macrophages and distant hemopoietic proliferation in spleen and bone marrow. Cyclosporine A (CyA) suppressed neutrophil accumulation and all cell lines of hemopoiesis. trans-1,2-Bis(5-amidino-2-benzimidazolyl)ethene (BBE) also interfered with neutrophil exudation, yet reduced only the erythroid component of the hemopoietic process. The ethane analogue of BBE, on the other hand, did not prevent neutrophil emigration, but held down splenic erythropoiesis and myelopoiesis. All three compounds stimulated streptococcus group A cell wall-derived peptidoglycan polysaccharide uptake by pouch macrophages. CyA being the least active, BBE and its ethane analogue also produced a shift of wear-and-tear pigment from large numbers of small splenic macro-phages into small numbers of large macrophages. The pouch model is very useful in the study of anti-inflammatory compounds and has furnished the first evidence of CyA interference with massive neutrophilic infiltration and with hemopoietic signals

    Sequential events in the pathogenesis of streptococcal cell wall-induced arthritis and their modulation by bis(5-amidino-2-benzimidazolyl)methane (BABIM).

    Get PDF
    This report builds on the authors' earlier discovery of bis(5-amidino-2-benzimidazolyl)methane (BABIM) as a strong suppressive agent for streptococcal cell wall fragment-induced arthritis in the Lewis rat. As a synthetic inhibitor of trypsinlike proteases, BABIM opens up a new route to the control of inflammatory joint disease. To gain a deeper insight into the function of the compound, the authors have now studied its influence on the sequential development of the joint changes and the associated lesions in spleen and liver. Bis(5-amidino-2-benzimidazolyl)methane is shown to block acute synovitis, to retard and reduce granuloma formation in spleen and liver, to decrease neutrophilic leukocytosis, and to diminish hemopoietic hyperplasia in the bone, and thus also to mitigate the distinctive osteoclastic and chondroclastic events. The compound does not interfere with the splenic immune response, the temporary rise in hepatocytic mitotic activity, or the organ deposition of streptococcal cell walls

    Streptococcal cell wall-induced systemic disease. Beneficial effects of trans-bis(5-amidino-2-benzimidazolyl)ethene, a novel, macrophage-directed anti-inflammatory agent.

    Get PDF
    Previously bis(5-amidino-2-benzimidazolyl)methane (BABIM) was identified as a strong inhibitor of the multisystem inflammatory disease induced in Lewis rats by injection of streptococcus group A cell wall-derived peptidoglycan polysaccharide (PG-APS). A BABIM derivative, trans-bis(5-amidino-2-benzimidazolyl)ethene (BBE), has attracted attention because of striking qualitative and quantitative differences in its activities when compared with the parent compound. BBE could control destructive tibial osteitis and necrotizing granulomatous splenitis and hepatitis, regardless if given in a preventive or curative mode. The compound had little effect on synovitis, however. BABIM, on the other hand, was active against synovitis and osteitis, but not against splenic granuloma formation. To be effective, it needed to be applied in a preventive mode. BBE caused a characteristic enlargement of PG-APS-laden splenic and hepatic macrophages suggesting that those cells represent targets of the inhibitor. BBE may be a powerful tool for the study of granulomatous lesions
    corecore