411 research outputs found
Time-reversal and super-resolving phase measurements
We demonstrate phase super-resolution in the absence of entangled states. The
key insight is to use the inherent time-reversal symmetry of quantum mechanics:
our theory shows that it is possible to \emph{measure}, as opposed to prepare,
entangled states. Our approach is robust, requiring only photons that exhibit
classical interference: we experimentally demonstrate high-visibility phase
super-resolution with three, four, and six photons using a standard laser and
photon counters. Our six-photon experiment demonstrates the best phase
super-resolution yet reported with high visibility and resolution.Comment: 4 pages, 3 figure
Demonstration of a simple entangling optical gate and its use in Bell-state analysis
We demonstrate a new architecture for an optical entangling gate that is
significantly simpler than previous realisations, using partially-polarising
beamsplitters so that only a single optical mode-matching condition is
required. We demonstrate operation of a controlled-Z gate in both
continuous-wave and pulsed regimes of operation, fully characterising it in
each case using quantum process tomography. We also demonstrate a
fully-resolving, nondeterministic optical Bell-state analyser based on this
controlled-Z gate. This new architecture is ideally suited to guided optics
implementations of optical gates.Comment: 4 pages, 3 figures. v2: additional author, improved data and figures
(low res), some other minor changes. Accepted for publication in PR
Quantum process tomography of a controlled-NOT gate
We demonstrate complete characterization of a two-qubit entangling process -
a linear optics controlled-NOT gate operating with coincident detection - by
quantum process tomography. We use maximum-likelihood estimation to convert the
experimental data into a physical process matrix. The process matrix allows
accurate prediction of the operation of the gate for arbitrary input states,
and calculation of gate performance measures such as the average gate fidelity,
average purity and entangling capability of our gate, which are 0.90, 0.83 and
0.73, respectively.Comment: 4 pages, 2 figures. v2 contains new data corresponding to improved
gate operation. Figure quality slightly reduced for arXi
Solid-Liquid Phase Diagrams for Binary Metallic Alloys: Adjustable Interatomic Potentials
We develop a new approach to determining LJ-EAM potentials for alloys and use
these to determine the solid-liquid phase diagrams for binary metallic alloys
using Kofke's Gibbs-Duhem integration technique combined with semigrand
canonical Monte Carlo simulations. We demonstrate that it is possible to
produce a wide-range of experimentally observed binary phase diagrams (with no
intermetallic phases) by reference to the atomic sizes and cohesive energies of
the two elemental materials. In some cases, it is useful to employ a single
adjustable parameter to adjust the phase diagram (we provided a good choice for
this free parameter). Next, we perform a systematic investigation of the effect
of relative atomic sizes and cohesive energies of the elements on the binary
phase diagrams. We then show that this approach leads to good agreement with
several experimental binary phase diagrams. The main benefit of this approach
is not the accurately reproduction of experimental phase diagrams, but rather
to provide a method by which material properties can be continuously changed in
simulations studies. This is one of the keys to the use of atomistic
simulations to understand mechanisms and properties in a manner not available
to experiment
Experimental feedback control of quantum systems using weak measurements
A goal of the emerging field of quantum control is to develop methods for
quantum technologies to function robustly in the presence of noise. Central
issues are the fundamental limitations on the available information about
quantum systems and the disturbance they suffer in the process of measurement.
In the context of a simple quantum control scenario--the stabilization of
non-orthogonal states of a qubit against dephasing--we experimentally explore
the use of weak measurements in feedback control. We find that, despite the
intrinsic difficultly of implementing them, weak measurements allow us to
control the qubit better in practice than is even theoretically possible
without them. Our work shows that these more general quantum measurements can
play an important role for feedback control of quantum systems.Comment: 4 pages, 3 figures. v2 Added extra citation, journal reference and
DOI. Minor typographic correction
Multimode quantum interference of photons in multiport integrated devices
We report the first demonstration of quantum interference in multimode
interference (MMI) devices and a new complete characterization technique that
can be applied to any photonic device that removes the need for phase stable
measurements. MMI devices provide a compact and robust realization of NxM
optical circuits, which will dramatically reduce the complexity and increase
the functionality of future generations of quantum photonic circuits
How to simulate a quantum computer using negative probabilities
The concept of negative probabilities can be used to decompose the
interaction of two qubits mediated by a quantum controlled-NOT into three
operations that require only classical interactions (that is, local operations
and classical communication) between the qubits. For a single gate, the
probabilities of the three operations are 1, 1, and -1. This decomposition can
be applied in a probabilistic simulation of quantum computation by randomly
choosing one of the three operations for each gate and assigning a negative
statistical weight to the outcomes of sequences with an odd number of negative
probability operations. The exponential speed-up of a quantum computer can then
be evaluated in terms of the increase in the number of sequences needed to
simulate a single operation of the quantum circuit.Comment: 11 pages, including one figure and one table. Full paper version for
publication in Journal of Physics A. Clarifications of basic concepts and
discussions of possible implications have been adde
Weak measurement of photon polarization by back-action induced path interference
The essential feature of weak measurements on quantum systems is the
reduction of measurement back-action to negligible levels. To observe the
non-classical features of weak measurements, it is therefore more important to
avoid additional back-action errors than it is to avoid errors in the actual
measurement outcome. In this paper, it is shown how an optical weak measurement
of diagonal (PM) polarization can be realized by path interference between the
horizontal (H) and vertical (V) polarization components of the input beam. The
measurement strength can then be controlled by rotating the H and V
polarizations towards each other. This well-controlled operation effectively
generates the back-action without additional decoherence, while the visibility
of the interference between the two beams only limits the measurement
resolution. As the experimental results confirm, we can obtain extremely high
weak values, even at rather low visibilities. Our method therefore provides a
realization of weak measurements that is extremely robust against experimental
imperfections.Comment: 11 pages, 3 figure
Testing sequential quantum measurements: how can maximal knowledge be extracted?
The extraction of information from a quantum system unavoidably implies a
modification of the measured system itself. It has been demonstrated recently
that partial measurements can be carried out in order to extract only a portion
of the information encoded in a quantum system, at the cost of inducing a
limited amount of disturbance. Here we analyze experimentally the dynamics of
sequential partial measurements carried out on a quantum system, focusing on
the trade-off between the maximal information extractable and the disturbance.
In particular we consider two different regimes of measurement, demonstrating
that, by exploiting an adaptive strategy, an optimal trade-off between the two
quantities can be found, as observed in a single measurement process. Such
experimental result, achieved for two sequential measurements, can be extended
to N measurement processes.Comment: 5 pages, 3 figure
- …