410 research outputs found

    Time-reversal and super-resolving phase measurements

    Get PDF
    We demonstrate phase super-resolution in the absence of entangled states. The key insight is to use the inherent time-reversal symmetry of quantum mechanics: our theory shows that it is possible to \emph{measure}, as opposed to prepare, entangled states. Our approach is robust, requiring only photons that exhibit classical interference: we experimentally demonstrate high-visibility phase super-resolution with three, four, and six photons using a standard laser and photon counters. Our six-photon experiment demonstrates the best phase super-resolution yet reported with high visibility and resolution.Comment: 4 pages, 3 figure

    Demonstration of a simple entangling optical gate and its use in Bell-state analysis

    Get PDF
    We demonstrate a new architecture for an optical entangling gate that is significantly simpler than previous realisations, using partially-polarising beamsplitters so that only a single optical mode-matching condition is required. We demonstrate operation of a controlled-Z gate in both continuous-wave and pulsed regimes of operation, fully characterising it in each case using quantum process tomography. We also demonstrate a fully-resolving, nondeterministic optical Bell-state analyser based on this controlled-Z gate. This new architecture is ideally suited to guided optics implementations of optical gates.Comment: 4 pages, 3 figures. v2: additional author, improved data and figures (low res), some other minor changes. Accepted for publication in PR

    Quantum process tomography of a controlled-NOT gate

    Get PDF
    We demonstrate complete characterization of a two-qubit entangling process - a linear optics controlled-NOT gate operating with coincident detection - by quantum process tomography. We use maximum-likelihood estimation to convert the experimental data into a physical process matrix. The process matrix allows accurate prediction of the operation of the gate for arbitrary input states, and calculation of gate performance measures such as the average gate fidelity, average purity and entangling capability of our gate, which are 0.90, 0.83 and 0.73, respectively.Comment: 4 pages, 2 figures. v2 contains new data corresponding to improved gate operation. Figure quality slightly reduced for arXi

    Solid-Liquid Phase Diagrams for Binary Metallic Alloys: Adjustable Interatomic Potentials

    Full text link
    We develop a new approach to determining LJ-EAM potentials for alloys and use these to determine the solid-liquid phase diagrams for binary metallic alloys using Kofke's Gibbs-Duhem integration technique combined with semigrand canonical Monte Carlo simulations. We demonstrate that it is possible to produce a wide-range of experimentally observed binary phase diagrams (with no intermetallic phases) by reference to the atomic sizes and cohesive energies of the two elemental materials. In some cases, it is useful to employ a single adjustable parameter to adjust the phase diagram (we provided a good choice for this free parameter). Next, we perform a systematic investigation of the effect of relative atomic sizes and cohesive energies of the elements on the binary phase diagrams. We then show that this approach leads to good agreement with several experimental binary phase diagrams. The main benefit of this approach is not the accurately reproduction of experimental phase diagrams, but rather to provide a method by which material properties can be continuously changed in simulations studies. This is one of the keys to the use of atomistic simulations to understand mechanisms and properties in a manner not available to experiment

    Experimental feedback control of quantum systems using weak measurements

    Get PDF
    A goal of the emerging field of quantum control is to develop methods for quantum technologies to function robustly in the presence of noise. Central issues are the fundamental limitations on the available information about quantum systems and the disturbance they suffer in the process of measurement. In the context of a simple quantum control scenario--the stabilization of non-orthogonal states of a qubit against dephasing--we experimentally explore the use of weak measurements in feedback control. We find that, despite the intrinsic difficultly of implementing them, weak measurements allow us to control the qubit better in practice than is even theoretically possible without them. Our work shows that these more general quantum measurements can play an important role for feedback control of quantum systems.Comment: 4 pages, 3 figures. v2 Added extra citation, journal reference and DOI. Minor typographic correction

    Multimode quantum interference of photons in multiport integrated devices

    Get PDF
    We report the first demonstration of quantum interference in multimode interference (MMI) devices and a new complete characterization technique that can be applied to any photonic device that removes the need for phase stable measurements. MMI devices provide a compact and robust realization of NxM optical circuits, which will dramatically reduce the complexity and increase the functionality of future generations of quantum photonic circuits

    How to simulate a quantum computer using negative probabilities

    Full text link
    The concept of negative probabilities can be used to decompose the interaction of two qubits mediated by a quantum controlled-NOT into three operations that require only classical interactions (that is, local operations and classical communication) between the qubits. For a single gate, the probabilities of the three operations are 1, 1, and -1. This decomposition can be applied in a probabilistic simulation of quantum computation by randomly choosing one of the three operations for each gate and assigning a negative statistical weight to the outcomes of sequences with an odd number of negative probability operations. The exponential speed-up of a quantum computer can then be evaluated in terms of the increase in the number of sequences needed to simulate a single operation of the quantum circuit.Comment: 11 pages, including one figure and one table. Full paper version for publication in Journal of Physics A. Clarifications of basic concepts and discussions of possible implications have been adde

    Weak measurement of photon polarization by back-action induced path interference

    Full text link
    The essential feature of weak measurements on quantum systems is the reduction of measurement back-action to negligible levels. To observe the non-classical features of weak measurements, it is therefore more important to avoid additional back-action errors than it is to avoid errors in the actual measurement outcome. In this paper, it is shown how an optical weak measurement of diagonal (PM) polarization can be realized by path interference between the horizontal (H) and vertical (V) polarization components of the input beam. The measurement strength can then be controlled by rotating the H and V polarizations towards each other. This well-controlled operation effectively generates the back-action without additional decoherence, while the visibility of the interference between the two beams only limits the measurement resolution. As the experimental results confirm, we can obtain extremely high weak values, even at rather low visibilities. Our method therefore provides a realization of weak measurements that is extremely robust against experimental imperfections.Comment: 11 pages, 3 figure

    Testing sequential quantum measurements: how can maximal knowledge be extracted?

    Get PDF
    The extraction of information from a quantum system unavoidably implies a modification of the measured system itself. It has been demonstrated recently that partial measurements can be carried out in order to extract only a portion of the information encoded in a quantum system, at the cost of inducing a limited amount of disturbance. Here we analyze experimentally the dynamics of sequential partial measurements carried out on a quantum system, focusing on the trade-off between the maximal information extractable and the disturbance. In particular we consider two different regimes of measurement, demonstrating that, by exploiting an adaptive strategy, an optimal trade-off between the two quantities can be found, as observed in a single measurement process. Such experimental result, achieved for two sequential measurements, can be extended to N measurement processes.Comment: 5 pages, 3 figure
    corecore