745 research outputs found
Bilateral negotiation in a multi-agent supply chain system
A supply chain is a set of organizations directly linked by flows of services from suppliers to customers. Supply chain activities range from the ordering and receipt of raw materials to the production and distribution of finished goods. Supply chain management is the integration of key activities across a supply chain for the purposes of building competitive infrastructures, synchronizing supply with demand, and leveraging worldwide logistics. This paper addresses the challenges created by supply chain management towards improving long-term performance of companies. It presents a multi-agent supply chain system composed of multiple software agents, each responsible for one or more supply chain activities, and each interacting with other agents in the execution of their responsibilities. Additionally, this paper presents the key features of a negotiation model for software agents. The model handles bilateral multi-issue negotiation and incorporates an alternating offers protocol, a set of logrolling strategies, and a set of negotiation tactics
Within-group behavioral variation promotes biased task performance and the emergence of a defensive caste in a social spider
The social spider Anelosimus studiosus exhibits a behavioral polymorphism where colony members express either a passive, tolerant behavioral tendency (social) or an aggressive, intolerant behavioral tendency (asocial). Here we test whether asocial individuals act as colony defenders by deflecting the suite of foreign (i.e., heterospecific) spider species that commonly exploit multi-female colonies. We (1) determined whether the phenotypic composition of colonies is associated with foreign spider abundance, (2) tested whether heterospecific spider abundance and diversity affect colony survival in the field, and (3) performed staged encounters between groups of A. studiosus and their colony-level predator Agelenopsis emertoni (A. emertoni)to determine whether asocial females exhibit more defensive behavior. We found that larger colonies harbor more foreign spiders, and the number of asocial colony members was negatively associated with foreign spider abundance. Additionally, colony persistence was negatively associated with the abundance and diversity of foreign spiders within colonies. In encounters with a colony-level predator, asocial females were more likely to exhibit escalatory behavior, and this might explain the negative association between the frequency of asocial females and the presence of foreign spider associates. Together, our results indicate that foreign spiders are detrimental to colony survival, and that asocial females play a defensive role in multi-female colonies
Fluctuation limits of strongly degenerate branching systems
Functional limit theorems for scaled fluctuations of occupation time
processes of a sequence of critical branching particle systems in with
anisotropic space motions and strongly degenerated splitting abilities are
proved in the cases of critical and intermediate dimensions. The results show
that the limit processes are constant measure-valued Wienner processes with
degenerated temporal and simple spatial structures.Comment: 15 page
Traffic Instabilities in Self-Organized Pedestrian Crowds
In human crowds as well as in many animal societies, local interactions among
individuals often give rise to self-organized collective organizations that
offer functional benefits to the group. For instance, flows of pedestrians
moving in opposite directions spontaneously segregate into lanes of uniform
walking directions. This phenomenon is often referred to as a smart collective
pattern, as it increases the traffic efficiency with no need of external
control. However, the functional benefits of this emergent organization have
never been experimentally measured, and the underlying behavioral mechanisms
are poorly understood. In this work, we have studied this phenomenon under
controlled laboratory conditions. We found that the traffic segregation
exhibits structural instabilities characterized by the alternation of organized
and disorganized states, where the lifetime of well-organized clusters of
pedestrians follow a stretched exponential relaxation process. Further analysis
show that the inter-pedestrian variability of comfortable walking speeds is a
key variable at the origin of the observed traffic perturbations. We show that
the collective benefit of the emerging pattern is maximized when all
pedestrians walk at the average speed of the group. In practice, however, local
interactions between slow- and fast-walking pedestrians trigger global
breakdowns of organization, which reduce the collective and the individual
payoff provided by the traffic segregation. This work is a step ahead toward
the understanding of traffic self-organization in crowds, which turns out to be
modulated by complex behavioral mechanisms that do not always maximize the
group's benefits. The quantitative understanding of crowd behaviors opens the
way for designing bottom-up management strategies bound to promote the
emergence of efficient collective behaviors in crowds.Comment: Article published in PLoS Computational biology. Freely available
here:
http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.100244
Managing lifestyle change to reduce coronary risk: a synthesis of qualitative research on peoples’ experiences
Background
Coronary heart disease is an incurable condition. The only approach known to slow its progression is healthy lifestyle change and concordance with cardio-protective medicines. Few people fully succeed in these daily activities so potential health improvements are not fully realised. Little is known about peoples’ experiences of managing lifestyle change. The aim of this study was to synthesise qualitative research to explain how participants make lifestyle change after a cardiac event and explore this within the wider illness experience.
Methods
A qualitative synthesis was conducted drawing upon the principles of meta-ethnography. Qualitative studies were identified through a systematic search of 7 databases using explicit criteria. Key concepts were identified and translated across studies. Findings were discussed and diagrammed during a series of audiotaped meetings.
Results
The final synthesis is grounded in findings from 27 studies, with over 500 participants (56% male) across 8 countries. All participants experienced a change in their self-identity from what was ‘familiar’ to ‘unfamiliar’. The transition process involved ‘finding new limits and a life worth living’ , ‘finding support for self’ and ‘finding a new normal’. Analyses of these concepts led to the generation of a third order construct, namely an ongoing process of ‘reassessing past, present and future lives’ as participants considered their changed identity. Participants experienced a strong urge to get back to ‘normal’. Support from family and friends could enable or constrain life change and lifestyle changes. Lifestyle change was but one small part of a wider ‘life’ change that occurred.
Conclusions
The final synthesis presents an interpretation, not evident in the primary studies, of a person-centred model to explain how lifestyle change is situated within ‘wider’ life changes. The magnitude of individual responses to a changed health status varied. Participants experienced distress as their notion of self identity shifted and emotions that reflected the various stages of the grief process were evident in participants’ accounts. The process of self-managing lifestyle took place through experiential learning; the level of engagement with lifestyle change reflected an individual’s unique view of the balance needed to manage ‘realistic change’ whilst leading to a life that was perceived as ‘worth living’. Findings highlight the importance of providing person centred care that aligns with both psychological and physical dimensions of recovery which are inextricably linked
Analysis of cancer metabolism with high-throughput technologies
<p>Abstract</p> <p>Background</p> <p>Recent advances in genomics and proteomics have allowed us to study the nuances of the Warburg effect – a long-standing puzzle in cancer energy metabolism – at an unprecedented level of detail. While modern next-generation sequencing technologies are extremely powerful, the lack of appropriate data analysis tools makes this study difficult. To meet this challenge, we developed a novel application for comparative analysis of gene expression and visualization of RNA-Seq data.</p> <p>Results</p> <p>We analyzed two biological samples (normal human brain tissue and human cancer cell lines) with high-energy, metabolic requirements. We calculated digital topology and the copy number of every expressed transcript. We observed subtle but remarkable qualitative and quantitative differences between the citric acid (TCA) cycle and glycolysis pathways. We found that in the first three steps of the TCA cycle, digital expression of aconitase 2 (<it>ACO2</it>) in the brain exceeded both citrate synthase (<it>CS</it>) and isocitrate dehydrogenase 2 (<it>IDH2</it>), while in cancer cells this trend was quite the opposite. In the glycolysis pathway, all genes showed higher expression levels in cancer cell lines; and most notably, digital gene expression of glyceraldehyde-3-phosphate dehydrogenase (<it>GAPDH</it>) and enolase (<it>ENO</it>) were considerably increased when compared to the brain sample.</p> <p>Conclusions</p> <p>The variations we observed should affect the rates and quantities of ATP production. We expect that the developed tool will provide insights into the subtleties related to the causality between the Warburg effect and neoplastic transformation. Even though we focused on well-known and extensively studied metabolic pathways, the data analysis and visualization pipeline that we developed is particularly valuable as it is global and pathway-independent.</p
Targeted Genome-Wide Enrichment of Functional Regions
Only a small fraction of large genomes such as that of the human contains the functional regions such as the exons, promoters, and polyA sites. A platform technique for selective enrichment of functional genomic regions will enable several next-generation sequencing applications that include the discovery of causal mutations for disease and drug response. Here, we describe a powerful platform technique, termed “functional genomic fingerprinting” (FGF), for the multiplexed genomewide isolation and analysis of targeted regions such as the exome, promoterome, or exon splice enhancers. The technique employs a fixed part of a uniquely designed Fixed-Randomized primer, while the randomized part contains all the possible sequence permutations. The Fixed-Randomized primers bind with full sequence complementarity at multiple sites where the fixed sequence (such as the splice signals) occurs within the genome, and multiplex amplify many regions bounded by the fixed sequences (e.g., exons). Notably, validation of this technique using cardiac myosin binding protein-C (MYBPC3) gene as an example strongly supports the application and efficacy of this method. Further, assisted by genomewide computational analyses of such sequences, the FGF technique may provide a unique platform for high-throughput sample production and analysis of targeted genomic regions by the next-generation sequencing techniques, with powerful applications in discovering disease and drug response genes
- …