1 research outputs found

    Computational Resources to Filter Gravitational Wave Data with P-approximant Templates

    Get PDF
    The prior knowledge of the gravitational waveform from compact binary systems makes matched filtering an attractive detection strategy. This detection method involves the filtering of the detector output with a set of theoretical waveforms or templates. One of the most important factors in this strategy is knowing how many templates are needed in order to reduce the loss of possible signals. In this study we calculate the number of templates and computational power needed for a one-step search for gravitational waves from inspiralling binary systems. We build on previous works by firstly expanding the post-Newtonian waveforms to 2.5-PN order and secondly, for the first time, calculating the number of templates needed when using P-approximant waveforms. The analysis is carried out for the four main first-generation interferometers, LIGO, GEO600, VIRGO and TAMA. As well as template number, we also calculate the computational cost of generating banks of templates for filtering GW data. We carry out the calculations for two initial conditions. In the first case we assume a minimum individual mass of 1M⊙1 M_{\odot} and in the second, we assume a minimum individual mass of 5M⊙5 M_{\odot}. We find that, in general, we need more P-approximant templates to carry out a search than if we use standard PN templates. This increase varies according to the order of PN-approximation, but can be as high as a factor of 3 and is explained by the smaller span of the P-approximant templates as we go to higher masses. The promising outcome is that for 2-PN templates the increase is small and is outweighed by the known robustness of the 2-PN P-approximant templates.Comment: 17 pages, 8 figures, Submitted to Class.Quant.Gra
    corecore