1,999 research outputs found

    Short-time critical dynamics of the three-dimensional systems with long-range correlated disorder

    Full text link
    Monte Carlo simulations of the short-time dynamic behavior are reported for three-dimensional Ising and XY models with long-range correlated disorder at criticality, in the case corresponding to linear defects. The static and dynamic critical exponents are determined for systems starting separately from ordered and disordered initial states. The obtained values of the exponents are in a good agreement with results of the field-theoretic description of the critical behavior of these models in the two-loop approximation and with our results of Monte Carlo simulations of three-dimensional Ising model in equilibrium state.Comment: 24 RevTeX pages, 12 figure

    Accelerated method of finding for the minimum of arbitrary Lipschitz convex function

    Full text link
    The goal of the paper is development of an optimization method with the superlinear convergence rate for an arbitrary convex function. For optimization an approximation is used that is similar to the Steklov integral averaging. The difference is that averaging is performed over a variable-dependent set, that is called a set-valued mapping (SVM) satisfying simple conditions. Novelty approach is that with such an approximation we obtain twice continuously differentiable convex functions, for optimizations of which are applied methods of the second order. The estimation of the convergence rate of the method is given

    The influence of long-range correlated defects on critical ultrasound propagation in solids

    Full text link
    The effect of long-range correlated quenched structural defects on the critical ultrasound attenuation and sound velocity dispersion is studied for three-dimensional Ising-like systems. A field-theoretical description of the dynamic critical effects of ultrasound propagation in solids is performed with allowance for both fluctuation and relaxation attenuation mechanisms. The temperature and frequency dependences of the dynamical scaling functions of the ultrasound critical characteristics are calculated in a two-loop approximation for different values of the correlation parameter aa of the Weinrib-Halperin model with long-range correlated defects. The asymptotic behavior of the dynamical scaling functions in hydrodynamic and critical regions is separated. The influence of long-range correlated disorder on the asymptotic behavior of the critical ultrasonic anomalies is discussed.Comment: 12 RevTeX pages, 3 figure

    Nonequilibrium work distribution of a quantum harmonic oscillator

    Full text link
    We analytically calculate the work distribution of a quantum harmonic oscillator with arbitrary time-dependent angular frequency. We provide detailed expressions for the work probability density for adiabatic and nonadiabatic processes, in the limit of low and high temperature. We further verify the validity of the quantum Jarzynski equalityComment: 6 pages, 3 figure

    Critical behavior of disordered systems with replica symmetry breaking

    Full text link
    A field-theoretic description of the critical behavior of weakly disordered systems with a pp-component order parameter is given. For systems of an arbitrary dimension in the range from three to four, a renormalization group analysis of the effective replica Hamiltonian of the model with an interaction potential without replica symmetry is given in the two-loop approximation. For the case of the one-step replica symmetry breaking, fixed points of the renormalization group equations are found using the Pade-Borel summing technique. For every value pp, the threshold dimensions of the system that separate the regions of different types of the critical behavior are found by analyzing those fixed points. Specific features of the critical behavior determined by the replica symmetry breaking are described. The results are compared with those obtained by the ϵ\epsilon-expansion and the scope of the method applicability is determined.Comment: 18 pages, 2 figure

    Relaxational dynamics in 3D randomly diluted Ising models

    Full text link
    We study the purely relaxational dynamics (model A) at criticality in three-dimensional disordered Ising systems whose static critical behaviour belongs to the randomly diluted Ising universality class. We consider the site-diluted and bond-diluted Ising models, and the +- J Ising model along the paramagnetic-ferromagnetic transition line. We perform Monte Carlo simulations at the critical point using the Metropolis algorithm and study the dynamic behaviour in equilibrium at various values of the disorder parameter. The results provide a robust evidence of the existence of a unique model-A dynamic universality class which describes the relaxational critical dynamics in all considered models. In particular, the analysis of the size-dependence of suitably defined autocorrelation times at the critical point provides the estimate z=2.35(2) for the universal dynamic critical exponent. We also study the off-equilibrium relaxational dynamics following a quench from T=\infty to T=T_c. In agreement with the field-theory scenario, the analysis of the off-equilibrium dynamic critical behavior gives an estimate of z that is perfectly consistent with the equilibrium estimate z=2.35(2).Comment: 38 page
    • …
    corecore