15 research outputs found

    Interaction of [Rh2(O2CCH3)4(H2O)2] and [Rh2(O2CCH(OH)Ph)2(phen)2(H2O)2](O2C-CH(OH)Ph)2 With Sulfhydryl Compounds and Ceruloplasmin

    Get PDF
    The interaction of binuclear rhodium(II) complexes [Rh2(OOCCH3)4(H2O)2], [Rh2{OOCCH(OH)Ph}2(phen)2(H2O)2] {OOCCH(OH)Ph}2, [Rh2(OOCCH3)2(bpy)2(H2O)2](OOCCH3)2 and [Rh2Cl2(OOCMe)2(bpy)2](3H2O) with ceruloplasmin, cysteine, glutathione and coenzyme A have been investigated using. UV-Vis and CD spectroscopies. The complexes containing phen or bpy at pH = 7.4 and 4.0 are readily reduced with sulfhydryl compounds, while rhodium(II) acetate is relatively stable in these conditions. Complex [Rh2{OOCCH(OH)Ph}2(phen)2(H2O)2] strongly changes structure of ceruloplasmin leading to the decrease of of α-helix content and loss of oxidase activity

    Binuclear Rhodium(II) Complexes With Selective Antibacterial Activity

    Get PDF
    Binuclear rhodium(II) complexes [Rh2Cl2(μ-OOCR)2(N-N)2] {R = H, Me; N-N = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen)} and [Rh2(μ-OOCR)2(N-N)2(H2O)2](RCOO)2 (R = Me, Et;) have been synthesized and their structure and properties have been studied by electronic, IR and 1H NMR spectroscopy. Antibacterial activity of these complexes against Escherichia coli and Staphylococcus aureus has been investigated. The most active antibacterial agents against E. coli were [Rh2Cl2(μ-OOCR)2(N-N)2] and [Rh2(μ-OOCR)2(N-N)2(H2O)2](RCOO)2 {R = H and Me} which were considerably more active than the appropriate nitrogen ligands. The complexes show low activity against S. aureus. The activity of the complexes [Rh2(OOCR)2(N-N)2(H2O)2](OOCR)2 against E. coli decreases in the series: R=H≅CH3>C2H5>C3H7≅C4H9. The reverse order was found in the case of S. aureus
    corecore