68 research outputs found

    Effects of High Intensity Ultrasound on BSCCO-2212 Superconductor

    Full text link
    Slurries of powdered Bi2Sr2CaCu2O8+x superconductor in low volatility alkanes were treated with intense ultrasound. Significant enhancements of magnetic irreversibility as well as transport critical current are reported. The effects are dependent on the concentration of the slurry and are optimal for 1.5% wt. slurry loading. Electron microscopy shows that ultrasonic treatment leads to a change in grain morphology and intergrain welding. The observed enhancement of superconducting properties is consistent with the limitations in critical currents in BSCCO superconductor being due to intergrain coupling rather than intragrain pinning strength.Comment: 3 page

    Superconducting Nanocomposites: Enhancement of Bulk Pinning and Improvement of Intergrain Coupling

    Full text link
    Heterogeneous sonochemical method was applied for synthesis of novel superconducting nanocomposites consisting of magnetic (and/or nonmagnetic) nanoparticles embedded into the bulk of ceramic superconductors. In addition to in-situ production of the efficient pinning centers, this synthesis method considerably improves the interbrain coupling. Significant enhancement of the magnetic irreversibility is reported for Fe2O3 nanoparticles embedded into the bulk of MgB2 superconductor. Nonmagnetic Mo2O5 nanoparticles also increase pinning strength, but less than magnetic Fe2O3. Detailed magnetization and electron microscopy characterization is presented. Theory of bulk magnetic pinning due to ferromagnetic nanoparticles of finite size embedded into the superconducting matrix is developed

    Sonochemical Modification of the Superconducting Properties of MgB2

    Full text link
    Ultrasonic irradiation of magnesium diboride slurries in decalin produces material with significant inter-grain fusion. Sonication in the presence of Fe(CO)5 produces magnetic Fe2O3 nanoparticles embedded in the MgB2 bulk. The resulting superconductor-ferromagnet composite exhibits considerable enhancement of the magnetic hysteresis, which implies an increase of vortex pinning strength due to embedded magnetic nanoparticles

    Effective collective barrier for magnetic relaxation in frozen ferrofluids

    Full text link
    Magnetic relaxation and frequency response were measured in frozen ferrimagnetic colloids of different concentrations. A crossover from reversible to irreversible behavior is observed for concentrated colloids. In irreversible state, magnetic relaxation is time-logarithmic over seven orders of magnitude of experimental time windows. A master curve construction within mean field phenomenological model is applied to extract effective collective barrier as a function of the irreversible magnetization. The barrier logarithmically diverges, providing evidence for self-organized critical behavior during magnetic relaxation in frozen ferrofluids

    Comparative Study of Magnetic Properties of Nanoparticles by High-Frequency Heat Dissipation and Conventional Magnetometry

    Get PDF
    The rate of heating of 15 nm uniformly-sized magnetic aqueous nanoparticles suspension by high-amplitude and high-frequency ac magnetic field induced by the resonating LC circuit was measured. The results are analyzed in terms of specific energy absorption rate (SAR). Fitting field amplitude and frequency dependences of SAR to the linear response theory, magnetic moment per particles was extracted. The value of magnetic moment was independently evaluated from dc magnetization measurements of a frozen colloid by fitting field-dependent magnetization to a Langevin function. The two methods produced similar results, which are compared to the theoretical expectation for this particle size. Additionally, analysis of SAR curves yielded effective relaxation time

    Direct Observation of Early Stages of Growth of Multilayered DNA-Templated Au-Pd-Au Core-Shell Nanoparticles in Liquid Phase

    Get PDF
    We report here on direct observation of early stages of formation of multilayered bimetallic Au-Pd core-shell nanocubes and Au-Pd-Au core-shell nanostars in liquid phase using low-dose in situ scanning transmission electron microscopy (S/TEM) with the continuous flow fluid cell. The reduction of Pd and formation of Au-Pd core-shell is achieved through the flow of the reducing agent. Initial rapid growth of Pd on Au along <111> direction is followed by a slower rearrangement of Pd shell. We propose the mechanism for the DNA-directed shape transformation of Au-Pd core-shell nanocubes to adopt a nanostar-like morphology in the presence of T30 DNA and discuss the observed nanoparticle motion in the confined volume of the fluid cell. The growth of Au shell over Au-Pd nanocube is initiated at the vertices of the nanocubes, leading to the preferential growth of the {111} facets and resulting in formation of nanostar-like particles. While the core-shell nanostructures formed in a fluid cell in situ under the low-dose imaging conditions closely resemble those obtained in solution syntheses, the reaction kinetics in the fluid cell is affected by the radiolysis of liquid reagents induced by the electron beam, altering the rate-determining reaction steps. We discuss details of the growth processes and propose the reaction mechanism in liquid phase in situ

    Magnetic nanoparticles as efficient bulk pinning centers in type-II superconductors

    Full text link
    Enhancement of flux pinning by magnetic nanoparticles embedded into the bulk of type-2 superconductor is studied both theoretically and experimentally. Magnetic part of the pinning force associated with the interaction between a spherical magnetic inclusion and an Abrikosov vortex was calculated in the London approximation. Calculations are supported by the experimental results obtained on sonochemically modified MgB2 superconductor with embedded magnetic Fe2O3 nanoparticles and compared to MgB2 with nonmagnetic Mo2O5 pinning centers of similar concentration and particle size distribution. It is shown that ferromagnetic nanoparticles result in a considerable enhancement of vortex pinning in large-kappa type-2 superconductors.Comment: PDF, 14 page

    High Velocity Interparticle Collisions Driven by Ultrasound

    Full text link
    • …
    corecore