2 research outputs found

    Changes in organic carbon to clay ratios in different soils and land uses in England and Wales over time

    Get PDF
    Realistic targets for soil organic carbon (SOC) concentrations are needed, accounting for differences between soils and land uses. We assess the use of SOC/clay ratio for this purpose by comparing changes over time in (a) the National Soil Inventory of England and Wales, first sampled in 1978–1983 and resampled in 1994–2003, and (b) two long-term experiments under ley-arable rotations on contrasting soils in the East of England. The results showed that normalising for clay concentration provides a more meaningful separation between land uses than changes in SOC alone. Almost half of arable soils in the NSI had degraded SOC/clay ratios ( 1/8, respectively. Given the wide range of soils and land uses across England and Wales in the datasets used to test these targets, they should apply across similar temperate regions globally, and at national to sub-regional scales.Biotechnology and Biological Sciences Research Council (BBSRC): BBS/E/C/000I0310 and BBS/E/C/000 J0300. Lawes Agricultural Trus

    Comparing the effect of different sample conditions and spectral libraries on the prediction accuracy of soil properties from near- and mid-infrared spectra at the field-scale

    Get PDF
    The prediction accuracy of soil properties by proximal soil sensing has made their application more practical. However, in order to gain sufficient accuracy, samples are typically air-dried and milled before spectral measurements are made. Calibration of the spectra is usually achieved by making wet chemistry measurements on a subset of the field samples and local regression models fitted to aid subsequent prediction. Both sample handling and wet chemistry can be labour and resource intensive. This study aims to quantify the uncertainty associated with soil property estimates from different methods to reduce effort of field-scale calibrations of soil spectra. We consider two approaches to reduce these expenses for predictions made from visible-near-infrared ((V)NIR), mid-infrared (MIR) spectra and their combination. First, we considered reducing the level of processing of the samples by comparing the effect of different sample conditions (in-situ, unprocessed, air-dried and milled). Second, we explored the use of existing spectral libraries to inform calibrations (based on milled samples from the UK National Soil Inventory) with and without ‘spiking’ the spectral libraries with a small subset of samples from the study fields. Prediction accuracy of soil organic carbon, pH, clay, available P and K for each of these approaches was evaluated on samples from agricultural fields in the UK. Available P and K could only be moderately predicted with the field-scale dataset where samples were milled. Therefore this study found no evidence to suggest that there is scope to reduce costs associated with sample processing or field-scale calibration for available P and K. However, the results showed that there is potential to reduce time and cost implications of using (V)NIR and MIR spectra to predict soil organic carbon, clay and pH. Compared to field-scale calibrations from milled samples, we found that reduced sample processing lowered the ratio of performance to inter-quartile range (RPIQ) between 0% and 76%. The use of spectral libraries reduced the RPIQ of predictions relative to field-scale calibrations from milled samples between 54% and 82% and the RPIQ was reduced between 29% and 70% for predictions when spectral libraries were spiked. The increase in uncertainty was specific to the combination of soil property and sensor analysed. We conclude that there is always a trade-off between prediction accuracy and the costs associated with soil sampling, sample processing and wet chemical analysis. Therefore the relative merits of each approach will depend on the specific case in question
    corecore