727 research outputs found
Evaluation of mTOR-regulated mRNA translation.
mTOR, the mammalian target of rapamycin, regulates protein synthesis (mRNA translation) by affecting the phosphorylation or activity of several translation factors. Here, we describe methods for studying the impact of mTOR signalling on protein synthesis, using inhibitors of mTOR such as rapamycin (which impairs some of its functions) or mTOR kinase inhibitors (which probably block all functions).To assess effects of mTOR inhibition on general protein synthesis in cells, the incorporation of radiolabelled amino acids into protein is measured. This does not yield information on the effects of mTOR on the synthesis of specific proteins. To do this, two methods are described. In one, stable-isotope labelled amino acids are used, and their incorporation into new proteins is determined using mass spectrometric methods. The proportions of labelled vs. unlabeled versions of each peptide from a given protein provide quantitative information about the rate of that protein's synthesis under different conditions. Actively translated mRNAs are associated with ribosomes in polyribosomes (polysomes); thus, examining which mRNAs are found in polysomes under different conditions provides information on the translation of specific mRNAs under different conditions. A method for the separation of polysomes from non-polysomal mRNAs is describe
Polymer Nanocomposite Materials Based on Carbon Nanotubes
(Invited Book Chapter
Dynamics of Elongation Factor 2 Kinase Regulation in Cortical Neurons in Response to Synaptic Activity
The rapid regulation of cell signaling in response to calcium in neurons is essential for real-time processing of large amounts of information in the brain. A vital regulatory component, and one of the most energy-intensive biochemical processes in cells, is the elongation phase of mRNA translation, which is controlled by the Ca(2+)/CaM-dependent elongation factor 2 kinase (eEF2K). However, little is known about the dynamics of eEF2K regulation in neurons despite its established role in learning and synaptic plasticity. To explore eEF2K dynamics in depth, we stimulated synaptic activity in mouse primary cortical neurons. We find that synaptic activity results in a rapid, but transient, increase in eEF2K activity that is regulated by a combination of AMPA and NMDA-type glutamate receptors and the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin complex 1 (mTORC1) pathways. We then used computational modeling to test the hypothesis that considering Ca(2+)-coordinated MEK/ERK, mTORC1, and eEF2k activation is sufficient to describe the observed eEF2K dynamics. Although such a model could partially fit the empirical findings, it also suggested that a crucial positive regulator of eEF2K was also necessary. Through additional modeling and empirical evidence, we demonstrate that AMP kinase (AMPK) is also an important regulator of synaptic activity-driven eEF2K dynamics in neurons. Our combined modeling and experimental findings provide the first evidence that it is necessary to consider the combined interactions of Ca(2+) with MEK/ERK, mTORC1, and AMPK to adequately explain eEF2K regulation in neurons
Recommended from our members
MoonLITE programmatic and technological update
MoonLITE is a proposed four penetrator lunar mission. Following a US/UK working group assessment, a science assessment and the first UK impact trials, a full mission-level phase A study has begun. A technological and programmatic update of the mission is given
Geostationary aerosol retrievals of extreme biomass burning plumes during the 2019–2020 Australian bushfires
Extreme biomass burning (BB) events, such as those seen during the 2019–2020 Australian bushfire season, are becoming more frequent and intense with climate change. Ground-based observations of these events can provide useful information on the macro- and micro-physical properties of the plumes, but these observations are sparse, especially in regions which are at risk of intense bushfire events. Satellite observations of extreme BB events provide a unique perspective, with the newest generation of geostationary imagers, such as the Advanced Himawari Imager (AHI), observing entire continents at moderate spatial and high temporal resolution. However, current passive satellite retrieval methods struggle to capture the high values of aerosol optical thickness (AOT) seen during these BB events. Accurate retrievals are necessary for global and regional studies of shortwave radiation, air quality modelling and numerical weather prediction. To address these issues, the Optimal Retrieval of Aerosol and Cloud (ORAC) algorithm has used AHI data to measure extreme BB plumes from the 2019–2020 Australian bushfire season. The sensitivity of the retrieval to the assumed optical properties of BB plumes is explored by comparing retrieved AOT with AErosol RObotic NETwork (AERONET) level-1.5 data over the AERONET site at Tumbarumba, New South Wales, between 1 December 2019 at 00:00 UTC and 3 January 2020 at 00:00 UTC. The study shows that for AOT values > 2, the sensitivity to the assumed optical properties is substantial. The ORAC retrievals and AERONET data are compared against the Japan Aerospace Exploration Agency (JAXA) Aerosol Retrieval Product (ARP), Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue over land, MODIS MAIAC, Sentinel-3 SYN and VIIRS Deep Blue products. The comparison shows the ORAC retrieval significantly improves coverage of optically thick plumes relative to the JAXA ARP, with approximately twice as many pixels retrieved and peak retrieved AOT values 1.4 times higher than the JAXA ARP. The ORAC retrievals have accuracy scores of 0.742–0.744 compared to the values of 0.718–0.833 for the polar-orbiting satellite products, despite successfully retrieving approximately 28 times as many pixels over the study period as the most successful polar-orbiting satellite product. The AHI and MODIS satellite products are compared for three case studies covering a range of BB plumes over Australia. The results show good agreement between all products for plumes with AOT values ≤ 2. For extreme BB plumes, the ORAC retrieval finds values of AOT > 15, significantly higher than those seen in events classified as extreme by previous studies, although with high uncertainty. A combination of hard limits in the retrieval algorithms and misclassification of BB plumes as cloud prevents the JAXA and MODIS products from returning AOT values significantly greater than 5.</p
The care of patients with Duchenne, Becker and other muscular dystrophies in the COVID-19 pandemic
The corona virus disease 2019 (COVID-19) pandemic has resulted in the reorganization of healthcare settings affecting clinical care delivery to patients with Duchenne and Becker muscular dystrophy (DBMD) as well as other inherited muscular dystrophies. The magnitude of the impact of this public health emergency on the care of patients with DBMD is unclear as they are suspected of having an increased risk for severe manifestations of COVID-19. In this paper, the authors discuss their consensus recommendations pertaining to care of these patients during the pandemic. We address issues surrounding corticosteroid and exon skipping treatments, cardiac medications, hydroxychloroquine use, emergency/respiratory care, rehabilitation management, and the conduct of clinical trials. We highlight the importance of collaborative treatment decisions between the patient, family, and health care provider, considering any geographic or institution-specific policies and precautions for COVID-19. We advocate for continuing multidisciplinary care for these patients using telehealth
CD98hc facilitates B cell proliferation and adaptive humoral immunity.
The proliferation of antigen-specific lymphocytes and resulting clonal expansion are essential for adaptive immunity. We report here that B cell-specific deletion of the heavy chain of CD98 (CD98hc) resulted in lower antibody responses due to total suppression of B cell proliferation and subsequent plasma cell formation. Deletion of CD98hc did not impair early B cell activation but did inhibit later activation of the mitogen-activated protein kinase Erk1/2 and downregulation of the cell cycle inhibitor p27. Reconstitution of CD98hc-deficient B cells with CD98hc mutants showed that the integrin-binding domain of CD98hc was required for B cell proliferation but that the amino acid-transport function of CD98hc was dispensable for this. Thus, CD98hc supports integrin-dependent rapid proliferation of B cells. We propose that the advantage of adaptive immunity favored the appearance of CD98hc in vertebrates
The Role of Interleukin-1 and Interleukin-18 in Pro-Inflammatory and Anti-Viral Responses to Rhinovirus in Primary Bronchial Epithelial Cells
Human Rhinovirus (HRV) is associated with acute exacerbations of chronic respiratory disease. In healthy individuals, innate viral recognition pathways trigger release of molecules with direct anti-viral activities and pro-inflammatory mediators which recruit immune cells to support viral clearance. Interleukin-1alpha (IL-1α), interleukin-1beta (IL-1β) and interleukin-18 (IL-18) have critical roles in the establishment of neutrophilic inflammation, which is commonly seen in airways viral infection and thought to be detrimental in respiratory disease. We therefore investigated the roles of these molecules in HRV infection of primary human epithelial cells. We found that all three cytokines were released from infected epithelia. Release of these cytokines was not dependent on cell death, and only IL-1β and IL-18 release was dependent on caspase-1 catalytic activity. Blockade of IL-1 but not IL-18 signaling inhibited up-regulation of pro-inflammatory mediators and neutrophil chemoattractants but had no effect on virus induced production of interferons and interferon-inducible genes, measured at both mRNA and protein level. Similar level of virus mRNA was detected with and without IL-1RI blockade. Hence IL-1 signaling, potentially involving both IL-1β and IL-1α, downstream of viral recognition plays a key role in induction of pro-inflammatory signals and potentially in recruitment and activation of immune cells in response to viral infection instigated by the epithelial cells, whilst not participating in direct anti-viral responses
Faster, Better, Cheaper: Solutions to the Atmospheric Shipping Emission Compliance and Attribution Conundrum
Global concerns regarding air quality have over the past decade led to the introduction
of regulations by the International Maritime Organisation curbing the emissions of sulphur and
nitrogen oxides (SOx, NOx). These limits were implemented initially in so-called “emission control
areas”, defined where the density of shipping activity combines with large coastal population centres
such as northwest Europe or eastern USA. However, any legislation requires a scientifically robust
and rigorous monitoring program to ensure compliance and prove attribution to an individual
vessel. We argue the case for adherence to the mantra “faster, better, cheaper”, where widespread
adoption of independent low-cost solutions of onboard, in-stack sensors, combined with existing,
globally ubiquitous satellite-based “automatic identification system” (AIS) data telemetry, provides
an excellent solution to the affordable compliance and attribution conundrum for shipping companies
and enforcement agencies alike. We present data from three field-campaigns which have significantly
advanced the concept of onboard real-time monitoring of atmospheric ship emissions
- …