125 research outputs found

    Functional classification of memory CD8(+) T cells by CX(3)CR1 expression

    No full text
    Localization of memory CD8(+) T cells to lymphoid or peripheral tissues is believed to correlate with proliferative capacity or effector function. Here we demonstrate that the fractalkine-receptor/CX(3)CR1 distinguishes memory CD8(+) T cells with cytotoxic effector function from those with proliferative capacity, independent of tissue-homing properties. CX(3)CR1-based transcriptome and proteome-profiling defines a core signature of memory CD8(+) T cells with effector function. We find CD62L(hi)CX(3)CR1(+) memory T cells that reside within lymph nodes. This population shows distinct migration patterns and positioning in proximity to pathogen entry sites. Virus-specific CX(3)CR1(+) memory CD8(+) T cells are scarce during chronic infection in humans and mice but increase when infection is controlled spontaneously or by therapeutic intervention. This CX3CR1-based functional classification will help to resolve the principles of protective CD8(+) T-cell memory

    Metabolic Activation of Intrahepatic CD8+ T Cells and NKT Cells Causes Nonalcoholic Steatohepatitis and Liver Cancer via Cross-Talk with Hepatocytes

    Get PDF
    SummaryHepatocellular carcinoma (HCC), the fastest rising cancer in the United States and increasing in Europe, often occurs with nonalcoholic steatohepatitis (NASH). Mechanisms underlying NASH and NASH-induced HCC are largely unknown. We developed a mouse model recapitulating key features of human metabolic syndrome, NASH, and HCC by long-term feeding of a choline-deficient high-fat diet. This induced activated intrahepatic CD8+ T cells, NKT cells, and inflammatory cytokines, similar to NASH patients. CD8+ T cells and NKT cells but not myeloid cells promote NASH and HCC through interactions with hepatocytes. NKT cells primarily cause steatosis via secreted LIGHT, while CD8+ and NKT cells cooperatively induce liver damage. Hepatocellular LTβR and canonical NF-κB signaling facilitate NASH-to-HCC transition, demonstrating that distinct molecular mechanisms determine NASH and HCC development

    Infection with hepatitis B virus carrying novel pre-S/S gene mutations in female siblings vaccinated at birth: two case reports

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>After the initiation of a mass hepatitis B vaccination program in Taiwan, the prevalence of hepatitis B virus infection has declined progressively. However, about 1 percent of the young generation, who received hepatitis B vaccination at birth, remain carriers. Infection with vaccine-escape hepatitis B virus mutants always occurs shortly after birth. Here, we report two female siblings in whom the infection occurred in their adolescence. This report raises the question of whether a booster for hepatitis B vaccination is needed.</p> <p>Case presentation</p> <p>Two 19 and 14-year-old Taiwanese female siblings were born to a mother infected with hepatitis B virus and received a complete course of hepatitis B vaccination at birth. They remained negative for serum hepatitis B surface antigen and positive for serum anti-hepatitis B surface antibody throughout their childhood. However, both were infected with the hepatitis B virus in their adolescence. Hepatitis B virus DNA was extracted from serum samples from the mother and two siblings. Hepatitis B virus pre-S/S sequence was amplified by polymerase chain reaction followed by nucleotide sequencing. When compared with the sequence obtained from the mother, multiple amino acid substitutions located near or in the major hydrophilic region of the surface antigen were identified in the elder sister. Four of these mutations (sL97S, sL98S, sG102R, and sA159P) were novel. A novel in-frame deletion (14 amino acids deleted, pre-S 127-140) was found in the hepatitis B virus pre-S2 region in the younger sister.</p> <p>Conclusions</p> <p>Despite having received hepatitis B vaccination at birth, hepatitis B virus infection can still occur in adolescence with the emergence of novel mutations in the pre-S/S gene. This is a rare event and, to the best of our knowledge, has not been previously reported.</p

    Hepatitis B virus PreS/S gene variants: Pathobiology and clinical implications

    Get PDF
    SummaryThe emergence and takeover of hepatitis B virus (HBV) variants carrying mutation(s) in the preS/S genomic region is a fairly frequent event that may occur spontaneously or may be the consequence of immunoprophylaxis or antiviral treatments. Selection of preS/S mutants may have relevant pathobiological and clinical implications. Both experimental data and studies in humans show that several specific mutations in the preS/S gene may induce an imbalance in the synthesis of the surface proteins and their consequent retention within the endoplasmic reticulum (ER) of the hepatocytes. The accumulation of mutated surface proteins may cause ER stress with the consequent induction of oxidative DNA damage and genomic instability. Viral mutants with antigenically modified surface antigen may be potentially infectious to immune-prophylaxed patients and may account for cases of occult HBV infection. In addition, preS/S variants were reported to be associated with cases of fulminant hepatitis as well as of fibrosing cholestatic hepatitis, and they are associated with cirrhosis and hepatocellular carcinoma development

    &quot;To be or not to be&quot;: Immune tolerance in chronic hepatitis B.

    No full text

    Living in the liver: Hepatic infections.

    No full text
    The liver has vital metabolic and clearance functions that involve the uptake of nutrients, waste products and pathogens from the blood. In addition, its unique immunoregulatory functions mediated by local expression of co-inhibitory receptors and immunosuppressive mediators help to prevent inadvertent organ damage. However, these tolerogenic properties render the liver an attractive target site for pathogens. Although most pathogens that reach the liver via the blood are eliminated or controlled by local innate and adaptive immune responses, some pathogens (such as hepatitis viruses) can escape immune control and persist in hepatocytes, causing substantial morbidity and mortality worldwide. Here, we review our current knowledge of the mechanisms of liver targeting by pathogens and describe the interplay between pathogens and host factors that promote pathogen elimination and maintain organ integrity or that allow pathogen persistence

    Improving Therapeutic Vaccination against Hepatitis B—Insights from Preclinical Models of Immune Therapy against Persistent Hepatitis B Virus Infection

    No full text
    Chronic hepatitis B affects more than 250 million individuals worldwide, putting them at risk of developing liver cirrhosis and liver cancer. While antiviral immune responses are key to eliminating hepatitis B virus (HBV) infections, insufficient antiviral immunity characterized by failure to eliminate HBV-infected hepatocytes is associated with chronic hepatitis B. Prophylactic vaccination against hepatitis B successfully established protective immunity against infection with the hepatitis B virus and has been instrumental in controlling hepatitis B. However, prophylactic vaccination schemes have not been successful in mounting protective immunity to eliminate HBV infections in patients with chronic hepatitis B. Here, we discuss the current knowledge on the development and efficacy of therapeutic vaccination strategies against chronic hepatitis B with particular emphasis on the pathogenetic understanding of dysfunctional anti-viral immunity. We explore the development of additional immune stimulation measures within tissues, in particular activation of immunogenic myeloid cell populations, and their use for combination with therapeutic vaccination strategies to improve the efficacy of therapeutic vaccination against chronic hepatitis B
    • …
    corecore