32 research outputs found

    Composition and the thermoelectric performance of β-Zn_4Sb_3

    Get PDF
    β-Zn_4Sb_3 is a promising thermoelectric material due to the abundance of zinc and antimony and reports of high efficiency in bulk samples. This work establishes the high temperature properties of β-Zn_4Sb_3 across the phase stability window. By controlling the stoichiometry, the Hall carrier concentration can be tuned from 6–9 × 10^(19) cm^(−3) without requiring extrinsic dopants. The trend in Seebeck coefficient on carrier concentration is rationalized with a single, parabolic band model. Extremely low lattice thermal conductivity (0.4–0.6 W m^(−1) K^(−1)) coupled with a moderate effective mass (1.2 m_e) and mobility leads to a large figure of merit (zT of 0.8 by 550 K). The single parabolic band model is used to obtain the carrier concentration dependence of the figure of merit and an optimum carrier concentration near 5 × 10^(19) cm^(−3) is predicted

    Self-diffusion in Zn 4 Sb 3 from first-principles molecular dynamics

    Get PDF
    a b s t r a c t The Zn 4 Sb 3 system is promising for thermoelectric applications due to its very low thermal conductivity coupled with a good power factor. Molecular dynamics calculations based on density functional theory were carried out for different stoichiometries of Zn 4 Sb 3 , corresponding to three situations: the composition Zn 3.6 Sb 3 (actually Zn 6 Sb 5 with only one Zn site occupied), a slightly higher Zn content Zn 3.8 Sb 3 (with some of the Zn atoms in interstitial sites), and a slightly lower Zn content Zn 3.4 Sb 3 (with some Zn vacancies). The diffusivity was calculated for different temperatures and the diffusion coefficient plotted in Arrhenius plots. The results compare well with experimental data, and point to a highly mobile Zn species with a very high diffusion coefficient prefactor

    Editorial for the Special Issue on ‘Metal Oxide Thin Film: Synthesis, Characterization, and Application’

    No full text
    The last two decades have witnessed the development of new technologies for thin-film deposition and coating [...

    Surveying the Synthesis, Optical Properties and Photocatalytic Activity of Cu3N Nanomaterials

    No full text
    This review addresses the most recent advances in the synthesis approaches, fundamental properties and photocatalytic activity of Cu3N nanostructures. Herein, the effect of synthesis conditions, such as solvent, temperature, time and precursor on the precipitation of Cu3N and the formation of secondary phases of Cu and Cu2O are surveyed, with emphasis on shape and size control. Furthermore, Cu3N nanostructures possess excellent optical properties, including a narrow bandgap in the range of 0.2 eV–2 eV for visible light absorption. In that regard, understanding the effect of the electronic structure on the bandgap and on the optical properties of Cu3N is therefore of interest. In fact, the density of states in the d-band of Cu has an influence on the band gap of Cu3N. Moreover, the potential of Cu3N nanomaterials for photocatalytic dye-degradation originates from the presence of active sites, i.e., Cu and N vacancies on the surface of the nanoparticles. Plasmonic nanoparticles tend to enhance the efficiency of photocatalytic dye degradation of Cu3N. Nevertheless, combining them with other potent photocatalysts, such as TiO2 and MoS2, augments the efficiency to 99%. Finally, the review concludes with perspectives and future research opportunities for Cu3N-based nanostructures

    Towards the Extraction of Radioactive Cesium-137 from Water via Graphene/CNT and Nanostructured Prussian Blue Hybrid Nanocomposites: A Review

    No full text
    Cesium is a radioactive fission product generated in nuclear power plants and is disposed of as liquid waste. The recent catastrophe at the Fukushima Daiichi nuclear plant in Japan has increased the 137Cs and 134Cs concentrations in air, soil and water to lethal levels. 137Cs has a half-life of 30.4 years, while the half-life of 134Cs is around two years, therefore the formers’ detrimental effects linger for a longer period. In addition, cesium is easily transported through water bodies making water contamination an urgent issue to address. Presently, efficient water remediation methods towards the extraction of 137Cs are being studied. Prussian blue (PB) and its analogs have shown very high efficiencies in the capture of 137Cs+ ions. In addition, combining them with magnetic nanoparticles such as Fe3O4 allows their recovery via magnetic extraction once exhausted. Graphene and carbon nanotubes (CNT) are the new generation carbon allotropes that possess high specific surface areas. Moreover, the possibility to functionalize them with organic or inorganic materials opens new avenues in water treatment. The combination of PB-CNT/Graphene has shown enhanced 137Cs+ extraction and their possible applications as membranes can be envisaged. This review will survey these nanocomposites, their efficiency in 137Cs+ extraction, their possible toxicity, and prospects in large-scale water remediation and succinctly survey other new developments in 137Cs+ extraction

    Tailoring SnO<sub>2</sub> Defect States and Structure: Reviewing Bottom-Up Approaches to Control Size, Morphology, Electronic and Electrochemical Properties for Application in Batteries

    No full text
    Tin oxide (SnO2) is a versatile n-type semiconductor with a wide bandgap of 3.6 eV that varies as a function of its polymorph, i.e., rutile, cubic or orthorhombic. In this review, we survey the crystal and electronic structures, bandgap and defect states of SnO2. Subsequently, the significance of the defect states on the optical properties of SnO2 is overviewed. Furthermore, we examine the influence of growth methods on the morphology and phase stabilization of SnO2 for both thin-film deposition and nanoparticle synthesis. In general, thin-film growth techniques allow the stabilization of high-pressure SnO2 phases via substrate-induced strain or doping. On the other hand, sol–gel synthesis allows precipitating rutile-SnO2 nanostructures with high specific surfaces. These nanostructures display interesting electrochemical properties that are systematically examined in terms of their applicability to Li-ion battery anodes. Finally, the outlook provides the perspectives of SnO2 as a candidate material for Li-ion batteries, while addressing its sustainability

    Nanoadsorbants for the Removal of Heavy Metals from Contaminated Water: Current Scenario and Future Directions

    No full text
    Heavy metal pollution of aquatic media has grown significantly over the past few decades. Therefore, a number of physical, chemical, biological, and electrochemical technologies are being employed to tackle this problem. However, they possess various inescapable shortcomings curbing their utilization at a commercial scale. In this regard, nanotechnology has provided efficient and cost-effective solutions for the extraction of heavy metals from water. This review will provide a detailed overview on the efficiency and applicability of various adsorbents, i.e., carbon nanotubes, graphene, silica, zero-valent iron, and magnetic nanoparticles for scavenging metallic ions. These nanoparticles exhibit potential to be used in extracting a variety of toxic metals. Recently, nanomaterial-assisted bioelectrochemical removal of heavy metals has also emerged. To that end, various nanoparticle-based electrodes are being developed, offering more efficient, cost-effective, ecofriendly, and sustainable options. In addition, the promising perspectives of nanomaterials in environmental applications are also discussed in this paper and potential directions for future works are suggested

    A Review on the Green Synthesis of Silver Nanoparticles and Their Morphologies Studied via TEM

    Get PDF
    Silver has been recognized as a nontoxic, safe inorganic antibacterial/antifungal agent used for centuries. Silver demonstrates a very high potential in a wide range of biological applications, more particularly in the form of nanoparticles. Environmentally friendly synthesis methods are becoming more and more popular in chemistry and chemical technologies and the need for ecological methods of synthesis is increasing; the aim is to reduce polluting reaction by-products. Another important advantage of green synthesis methods lies in its cost-effectiveness and in the abundance of raw materials. During the last five years, many efforts were put into developing new greener and cheaper methods for the synthesis of nanoparticles. The cost decrease and less harmful synthesis methods have been the motivation in comparison to other synthesis techniques where harmful reductive organic species produce hazardous by-products. This environment-friendly aspect has now become a major social issue and is instrumental in combatting environmental pollution through reduction or elimination of hazardous materials. This review describes a brief overview of the research on green synthesis of silver metal nanoparticles and the influence of the method on their size and morphology
    corecore