78 research outputs found

    Resonance and marginal instability of switching systems

    Full text link
    We analyse the so-called Marginal Instability of linear switching systems, both in continuous and discrete time. This is a phenomenon of unboundedness of trajectories when the Lyapunov exponent is zero. We disprove two recent conjectures of Chitour, Mason, and Sigalotti (2012) stating that for generic systems, the resonance is sufficient for marginal instability and for polynomial growth of the trajectories. We provide a characterization of marginal instability under some mild assumptions on the sys- tem. These assumptions can be verified algorithmically and are believed to be generic. Finally, we analyze possible types of fastest asymptotic growth of trajectories. An example of a pair of matrices with sublinear growth is given

    On the complexity of computing the capacity of codes that avoid forbidden difference patterns

    Full text link
    We consider questions related to the computation of the capacity of codes that avoid forbidden difference patterns. The maximal number of nn-bit sequences whose pairwise differences do not contain some given forbidden difference patterns increases exponentially with nn. The exponent is the capacity of the forbidden patterns, which is given by the logarithm of the joint spectral radius of a set of matrices constructed from the forbidden difference patterns. We provide a new family of bounds that allows for the approximation, in exponential time, of the capacity with arbitrary high degree of accuracy. We also provide a polynomial time algorithm for the problem of determining if the capacity of a set is positive, but we prove that the same problem becomes NP-hard when the sets of forbidden patterns are defined over an extended set of symbols. Finally, we prove the existence of extremal norms for the sets of matrices arising in the capacity computation. This result makes it possible to apply a specific (even though non polynomial) approximation algorithm. We illustrate this fact by computing exactly the capacity of codes that were only known approximately.Comment: 7 pages. Submitted to IEEE Trans. on Information Theor

    Efficient algorithms for deciding the type of growth of products of integer matrices

    Full text link
    For a given finite set Σ\Sigma of matrices with nonnegative integer entries we study the growth of maxt(Σ)=max{A1...At:AiΣ}. \max_t(\Sigma) = \max\{\|A_{1}... A_{t}\|: A_i \in \Sigma\}. We show how to determine in polynomial time whether the growth with tt is bounded, polynomial, or exponential, and we characterize precisely all possible behaviors.Comment: 20 pages, 4 figures, submitted to LA
    corecore