78 research outputs found
Resonance and marginal instability of switching systems
We analyse the so-called Marginal Instability of linear switching systems,
both in continuous and discrete time. This is a phenomenon of unboundedness of
trajectories when the Lyapunov exponent is zero. We disprove two recent
conjectures of Chitour, Mason, and Sigalotti (2012) stating that for generic
systems, the resonance is sufficient for marginal instability and for
polynomial growth of the trajectories. We provide a characterization of
marginal instability under some mild assumptions on the sys- tem. These
assumptions can be verified algorithmically and are believed to be generic.
Finally, we analyze possible types of fastest asymptotic growth of
trajectories. An example of a pair of matrices with sublinear growth is given
On the complexity of computing the capacity of codes that avoid forbidden difference patterns
We consider questions related to the computation of the capacity of codes
that avoid forbidden difference patterns. The maximal number of -bit
sequences whose pairwise differences do not contain some given forbidden
difference patterns increases exponentially with . The exponent is the
capacity of the forbidden patterns, which is given by the logarithm of the
joint spectral radius of a set of matrices constructed from the forbidden
difference patterns. We provide a new family of bounds that allows for the
approximation, in exponential time, of the capacity with arbitrary high degree
of accuracy. We also provide a polynomial time algorithm for the problem of
determining if the capacity of a set is positive, but we prove that the same
problem becomes NP-hard when the sets of forbidden patterns are defined over an
extended set of symbols. Finally, we prove the existence of extremal norms for
the sets of matrices arising in the capacity computation. This result makes it
possible to apply a specific (even though non polynomial) approximation
algorithm. We illustrate this fact by computing exactly the capacity of codes
that were only known approximately.Comment: 7 pages. Submitted to IEEE Trans. on Information Theor
Efficient algorithms for deciding the type of growth of products of integer matrices
For a given finite set of matrices with nonnegative integer entries
we study the growth of We show how to determine in polynomial time whether the growth with
is bounded, polynomial, or exponential, and we characterize precisely all
possible behaviors.Comment: 20 pages, 4 figures, submitted to LA
- …