5 research outputs found

    AlGaAs/GaAs Quantum Well Infrared Photodetectors

    Get PDF
    In this article, we present an overview of a focal plane array (FPA) with 640 × 512 pixels based on the AlGaAs quantum well infrared photodetector (QWIP). The physical principles of the QWIP operation and their parameters for the spectral range of 8–10 μm have been discussed. The technology of the manufacturing FPA based on the QWIP structures with the pixels 384 × 288 and 640 × 512 has been demonstrated. The parameters of the manufactured 640 × 512 FPA with a step of 20 μm have been given. At the operating temperature of 72 K, the temperature resolution of QWIP focal plane arrays is less than 35 mK. The number of defective elements in the matrix does not exceed 0.5%. The stability and uniformity of the FPA have been demonstrated

    Electron and hole injection barriers between silicon substrate and RF magnetron sputtered In2O3 : Er films

    Get PDF
    In2O3 : Er films have been synthesized on silicon substrates by RF magnetron sputter deposition. The currents through the synthesized metal/oxide/semiconductor (MOS) structures (Si/In2O3 : Er/In-contact) have been measured for n and p type conductivity silicon substrates and described within the model of majority carrier thermoemission through the barrier, with bias voltage correction to the silicon potential drop. The electron and hole injection barriers between the silicon substrate and the film have been found to be 0.14 and 0.3 eV, respectively, by measuring the temperature dependence of the forward current at a low sub-barrier bias. The resulting low hole injection barrier is accounted for by the presence of defect state density spreading from the valence band edge into the In2O3 : Er band gap to form a hole conduction channel. The presence of defect state density in the In2O3 : Er band gap is confirmed by photoluminescence data in the respective energy range 1.55–3.0 eV. The band structure of the Si/In2O3 : Er heterojunction has been analyzed. The energy gap between the In2O3 : Er conduction band electrons and the band gap conduction channel holes has been estimated to be 1.56 eV

    Electron and hole injection barriers between silicon substrate and RF magnetron sputtered In2O3 : Er films

    No full text
    In2O3 : Er films have been synthesized on silicon substrates by RF magnetron sputter deposition. The currents through the synthesized metal/oxide/semiconductor (MOS) structures (Si/In2O3 : Er/In-contact) have been measured for n and p type conductivity silicon substrates and described within the model of majority carrier thermoemission through the barrier, with bias voltage correction to the silicon potential drop. The electron and hole injection barriers between the silicon substrate and the film have been found to be 0.14 and 0.3 eV, respectively, by measuring the temperature dependence of the forward current at a low sub-barrier bias. The resulting low hole injection barrier is accounted for by the presence of defect state density spreading from the valence band edge into the In2O3 : Er band gap to form a hole conduction channel. The presence of defect state density in the In2O3 : Er band gap is confirmed by photoluminescence data in the respective energy range 1.55–3.0 eV. The band structure of the Si/In2O3 : Er heterojunction has been analyzed. The energy gap between the In2O3 : Er conduction band electrons and the band gap conduction channel holes has been estimated to be 1.56 eV

    1,2,3,4-Tetrafluorobiphenylene: A Prototype Janus-Headed Scaffold for Ambipolar Materials.

    No full text
    The title compound was synthesized by Ullmann cross-coupling in low yield as first representative of [n]phenylene containing hydrocarbon and fluorocarbon rings. Stille / Suzuki-Miyaura cross-coupling reactions, as well as substitution of fluorine in suitable starting compounds, failed to give the same product. The geometric and electronic structures of the title compound were studied by X-ray diffraction, cyclic voltammetry and density functional theory calculations, together with Hirshfeld surface and reduced density gradient analyses. The crystal structure features head-to-tail π-stacking and other fluorine-related secondary bonding interactions. From the nucleus-independent chemical shifts (NICS) descriptor, the four-membered ring of the title compound is antiaromatic, and the six-membered rings are aromatic. The Janus molecule is highly polarized; and the six-membered fluoro- and hydrocarbon rings are Lewis π-acidic and π-basic, respectively. The electrochemically-generated radical cation of the title compound is long-lived as characterized by electron paramagnetic resonance, whereas the radical anion is unstable in solution. The title compound reveals electrical properties of an insulator. On expanding its molecular scaffold towards partially fluorinated [n]phenylenes (n ≥ 2), the properties presumably can be transformed into those of semiconductors. In this context, the title compound is suggested as a prototype scaffold for ambipolar materials for organic electronics and spintronics
    corecore