5 research outputs found

    Spatio-temporal patterns in the distribution of the multi-mammate mouse, Mastomys natalensis, in rice crop and fallow land habitats in Tanzania

    Get PDF
    An understanding of the dispersion patterns of a pest is an important pre-requisite for developing an effective management programme for the pest. In this study, rodents were trapped in two rice fields and two fallow fields for three consecutive nights each month from June 2010 to May 2012. Mastomys natalensis was the most abundant rodent pest species in the study area, accounting for > 95% of the trapped rodent community. Rattus rattus, Dasymys incomtus, Acomys spinosissimus and Grammomys dolichurus comprised relatively small proportions of the trapped population. Morisita’s index of dispersion was used to measure the relative dispersal pattern aggregate, random, uniform) of individuals across each trapping grid as a means of comparing rodent distribution in rice and fallow fields over time. This analysis revealed that the rodents in rice fields generally exhibited an aggregated spatio-temporal distribution. However, the rodents in fallow fields were generally less aggregated, approaching a random distribution in some habitats and seasons. Heat maps of trapping grids visually confirmed these dispersal patterns, indicating the clumped or random nature of captured rodents. ANOVA showed that the parameters of habitat (rice, fallow), crop stage (transplanting, vegetative, booting, maturity) and cropping season (wet, dry) all significantly impacted the number of rodents captured, with the vegetative, dry season, fallow habitat having the highest number of rodents; and the transplanting, wet season, rice habitat with the least number of rodents. Therefore, such spatio-temporal patterns can serve as a tool for developing stratified biodiversity sampling plans for small mammals and decision making for rodent pest management strategies

    Survival and recruitment of the multimammate mouse, Mastomys natalensis (Smith 1834), in a rice agro-ecosystem

    Get PDF
    We investigated the recruitment and survival of the multimammate mouse, Mastomys natalensis, within irrigated rice and fallow field habitats at different time periods related to rice crop growth stages. Capture-Mark-Recapture data were collected for M . natalensis each month from June 2010 to May 2012, and both recruitment and survival were estimated in relation to land use (irrigated rice or fallow field) within the agro-ecosystem. Higher recruitment and survival were observed in rice fields than in fallow fields suggesting the relationship was compensatory when there was a higher quality food resource. In terms of management, farmers in the study area should implement management strategies in rice fields at both transplanting and maturity stages of crop growth in order to maintain recruitment and survival at low levels

    Population dynamics and breeding patterns of multimammatemouse, Mastomys natalensis (Smith 1834), in irrigated rice fields in Eastern Tanzania

    No full text
    Pest Management Science 2013; 69:371-377BACKGROUND: Multimammate mice are the most important vertebrate pests in Sub-Saharan Africa and are also reservoirs of many zoonotic diseases, including sylvan plague. This study investigated the population dynamics and breeding patterns of this mouse in irrigated rice cropping systems in eastern Tanzania. RESULTS: The multimammate mouse, Mastomys natalensis, population varied with habitat and months. Fallow land had a more abundant population than rice fields. The highest population peak was observed during the dry season from July to October. Mastomys natalensis is sexually active throughout the year in the study area, although it reaches the highest level in June and December when rice is at the maturity stage. This suggests that breeding is highly influenced by the presence of a rice crop in both seasons. More juvenile individuals were recorded in August and September, indicating that they were produced in the previous breeding months. The sex ratio of M. natalensis was not skewed to either males or females, indicating that it was at parity. CONCLUSION: Rodent population dynamics during the study periods in all habitats indicated that high birth rates accounted for the rapid population growth and turnover. Regular control and sustainable operations are thus essential if rodent pest populations are to be kept within tolerable limits

    Population dynamics and breeding patterns of multimammatemouse, Mastomys natalensis (Smith 1834), in irrigated rice fields in Eastern Tanzania

    No full text
    Pest Management Science 2013; 69:371-377BACKGROUND: Multimammate mice are the most important vertebrate pests in Sub-Saharan Africa and are also reservoirs of many zoonotic diseases, including sylvan plague. This study investigated the population dynamics and breeding patterns of this mouse in irrigated rice cropping systems in eastern Tanzania. RESULTS: The multimammate mouse, Mastomys natalensis, population varied with habitat and months. Fallow land had a more abundant population than rice fields. The highest population peak was observed during the dry season from July to October. Mastomys natalensis is sexually active throughout the year in the study area, although it reaches the highest level in June and December when rice is at the maturity stage. This suggests that breeding is highly influenced by the presence of a rice crop in both seasons. More juvenile individuals were recorded in August and September, indicating that they were produced in the previous breeding months. The sex ratio of M. natalensis was not skewed to either males or females, indicating that it was at parity. CONCLUSION: Rodent population dynamics during the study periods in all habitats indicated that high birth rates accounted for the rapid population growth and turnover. Regular control and sustainable operations are thus essential if rodent pest populations are to be kept within tolerable limits
    corecore