46 research outputs found

    Orbital Observations of Dust Lofted by Daytime Convective Turbulence

    Get PDF
    Over the past several decades, orbital observations of lofted dust have revealed the importance of mineral aerosols as a climate forcing mechanism on both Earth and Mars. Increasingly detailed and diverse data sets have provided an ever-improving understanding of dust sources, transport pathways, and sinks on both planets, but the role of dust in modulating atmospheric processes is complex and not always well understood. We present a review of orbital observations of entrained dust on Earth and Mars, particularly that produced by the dust-laden structures produced by daytime convective turbulence called “dust devils”. On Earth, dust devils are thought to contribute only a small fraction of the atmospheric dust budget; accordingly, there are not yet any published accounts of their occurrence from orbit. In contrast, dust devils on Mars are thought to account for several tens of percent of the planet’s atmospheric dust budget; the literature regarding martian dust devils is quite rich. Because terrestrial dust devils may temporarily contribute significantly to local dust loading and lowered air quality, we suggest that martian dust devil studies may inform future studies of convectively-lofted dust on Earth

    Atmospheric turbidity measurements at Broome in Western Australia 1979-1984

    Get PDF
    A special version of a Voltz, hand-held sun photometer was used to measure direct solar radiation several times each day at the meteorological station at Broome aerodrome from 1979 to 1984. These data were fully compensated and corrected and interpreted in terms of atmospheric turbidity using precise solar calculations. Calibration included extrapolation to zero air mass (Langley plots) and cross-comparisons. The data show no synoptic or mesoscale variation but a seasonal variation with higher values near the end of the dry periods. Calculated wavelengths exponents show smaller particles are present in these dry periods. A harmonic analysis shows that 20-25% of the variance is explained by an annual cycle, 10-15% by a cycle of 3 years, and that turbidity increases 7-11% per year. Bushfires and marine aerosols are likely to be important contributions to the trends though effects of the volcanic eruption of Galunggung are apparent in 1982-1983

    Modulation of Saharan dust export by the North African dipole

    Get PDF
    © Author(s) 2015. We have studied the relationship between the long-term interannual variability in large-scale meteorology in western North Africa - the largest and most active dust source worldwide - and Saharan dust export in summer, when enhanced dust mobilization in the hyper-arid Sahara results in maximum dust impacts throughout the North Atlantic. We address this issue by analyzing 28 years (1987-2014) of summer averaged dust concentrations at the high-altitude Izaña observatory (∼ 2400 m a.s.l.) on Tenerife, and satellite and meteorological reanalysis data. The summer meteorological scenario in North Africa (aloft 850 hPa) is characterized by a high over the the subtropical Sahara and a low over the tropics linked to the monsoon. We measured the variability of this high-low dipole-like pattern in terms of the North African dipole intensity (NAFDI): the difference of geopotential height anomalies averaged over the subtropics (30-32°N, Morocco) and the tropics (10-13°N, Bamako region) close to the Atlantic coast (at 5-8° W). We focused on the 700 hPa standard level due to dust export off the coast of North Africa tending to occur between 1 and 5 km a.s.l. Variability in the NAFDI is associated with displacements of the North African anticyclone over the Sahara and this has implications for wind and dust export. The correlations we found between the 1987-2014 summer mean of NAFDI with dust at Izaña, satellite dust observations and meteorological re-analysis data indicate that increases in the NAFDI (i) result in higher wind speeds at the north of the Inter-Tropical Convergence Zone that are associated with enhanced dust export over the subtropical North Atlantic, (ii) influence the long-term variability of the size distribution of exported dust particles (increasing the load of coarse dust) and (iii) are associated with enhanced rains in the tropical and northern shifts of the tropical rain band that may affect the southern Sahel. Interannual variability in NAFDI is also connected to spatial distribution of dust over the North Atlantic; high NAFDI summers are associated with major dust export (linked to winds) in the subtropics and minor dust loads in the tropics (linked to higher rainfall), and vice versa. The evolution of the summer NAFDI values since 1950 to the present day shows connections to climatic variability (through the Sahelian drought, ENSO (El Niño-Southern Oscillation) and winds) that have implications for dust export paths. Efforts to anticipate how dust export may evolve in future decades will require a better understanding of how the large-scale meteorological systems represented by the NAFD will evolve

    Long-term trends in aerosol and precipitation composition over the western North Atlantic Ocean at Bermuda

    Get PDF
    Since the 1980s, emissions of SO2 and NOx (NO + NO2) from anthropogenic sources in the United States (US), Canada, and Europe have decreased significantly suggesting that the export of oxidized S and N compounds from surrounding continents to the atmosphere overlying the North Atlantic Ocean (NAO) has also decreased. The chemical compositions of aerosols and precipitation sampled daily on Bermuda (32.27° N, 64.87° W) from 1989 to 1997 and from 2006 to 2009 were evaluated to quantify the magnitudes, significance, and implications of associated tends in atmospheric composition. The chemical data were stratified based on FLEXPART (FLEXible PARTicle dispersion model) retroplumes into four discrete transport regimes: westerly flow from eastern North America (NEUS/SEUS); easterly trade-wind flow from northern Africa and the subtropical NAO (Africa); long, open-ocean, anticyclonic flow around the Bermuda High (Oceanic); and transitional flow from the relatively clean open ocean to the polluted eastern North America (North). Based on all data, annual average concentrations of non-sea-salt (nss) SO42– associated with aerosols and annual volume-weighted-average (VWA) concentrations in precipitation decreased significantly (by 22% and 49%, respectively) whereas annual VWA concentrations of NH4+ in precipitation increased significantly (by 70%). Corresponding trends in aerosol and precipitation NO3– and of aerosol NH4+ were insignificant. Nss SO42– in precipitation under NEUS/SEUS and Oceanic flow decreased significantly (61% each) whereas corresponding trends in particulate nss SO42– under both flow regimes were insignificant. Trends in precipitation composition were driven in part by decreasing emissions of SO2 over upwind continents and associated decreases in anthropogenic contributions to nss SO42– concentrations. Under NEUS/SEUS and Oceanic flow, the ratio of anthropogenic to biogenic contributions to nss SO42– in the column scavenged by precipitation were relatively greater than those in near surface aerosol, which implies that, for these flow regimes, precipitation is a better indicator of overall anthropogenic impacts on the lower troposphere. Particulate nss SO42– under African flow also decreased significantly (34%) whereas the corresponding decrease in nss SO42– associated with precipitation was insignificant. We infer that these trends were driven in part by reductions in the emissions and transport of oxidized S compounds from Europe. The lack of significant trends in NO3– associated with aerosols and precipitation under NEUS/SEUS flow is notable in light of the large decrease (37%) in NOx emissions in the US and Canada over the period of record. Rapid chemical processing of oxidized N in marine air contributed to this lack of correspondence. Decreasing ratios of nss SO42– to NH4+ and the significant decreasing trend in precipitation acidity (37%) indicate that the total amount of acidity in the multiphase gas–aerosol system in the western NAO troposphere decreased over the period of record. Decreasing aerosol acidities would have shifted the phase partitioning of total NH3 (NH3 + particulate NH4+ towards the gas phase thereby decreasing the atmospheric lifetime of total NH3 against wet plus dry deposition. The trend of increasing NH4+ in precipitation at Bermuda over the period of record suggests that NH3 emissions from surrounding continents also increased. Decreasing particulate nss SO42– in near-surface air under NEUS/SEUS flow over the period of record implies that the corresponding shortwave scattering and absorption by nss S and associated aerosols constituents also decreased. These changes in radiative transfer suggest a corresponding lower limit for net warming over the period in the range of 0.1–0.3 W m–2
    corecore