7 research outputs found

    Immunomodulatory effects of stem cells: Therapeutic option for neurodegenerative disorders

    No full text
    Stem cells have the capability of self-renewal and can differentiate into different cell types that might be used in regenerative medicine. Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS) currently lack effective treatments. Although stem cell therapy is still on the way from bench to bedside, we consider that it might provide new hope for patients suffering with neurodegenerative diseases. In this article, we will give an overview of recent studies on the potential therapeutic use of mesenchymal stem cells (MSCs), neural stem cells (NSCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and perinatal stem cells to neurodegenerative disorders and we will describe their immunomodulatory mechanisms of action in specific therapeutic modalities

    Flavonoids against the SARS-CoV-2 induced inflammatory storm

    No full text
    The disease severity of COVID-19, especially in the elderly and patients with co-morbidities, is characterized by hypercytokinemia, an exaggerated immune response associated with an uncontrolled and excessive release of proinflammatory cytokine mediators (cytokine storm). Flavonoids, important secondary metabolites of plants, have long been studied as therapeutic interventions in inflammatory diseases due to their cytokine-modulatory effects. In this review, we discuss the potential role of flavonoids in the modulation of signaling pathways that are crucial for COVID-19 disease, particularly those related to inflammation and immunity. The immunomodulatory ability of flavonoids, carried out by the regulation of inflammatory mediators, the inhibition of endothelial activation, NLRP3 inflammasome, toll-like receptors (TLRs) or bromodomain containing protein 4 (BRD4), and the activation of the nuclear factor erythroid-derived 2-related factor 2 (Nrf2), might be beneficial in regulating the cytokine storm during SARS-CoV-2 infection. Moreover, the ability of flavonoids to inhibit dipeptidyl peptidase 4 (DPP4), neutralize 3-chymotrypsin-like protease (3CLpro) or to affect gut microbiota to maintain immune response, and the dual action of angiotensin-converting enzyme 2 (ACE-2) may potentially also be applied to the exaggerated inflammatory responses induced by SARS-CoV-2. Based on the previously proven effects of flavonoids in other diseases or on the basis of newly published studies associated with COVID-19 (bioinformatics, molecular docking), it is reasonable to assume positive effects of flavonoids on inflammatory changes associated with COVID-19. This review highlights the current state of knowledge of the utility of flavonoids in the management of COVID-19 and also points to the multiple biological effects of flavonoids on signaling pathways associated with the inflammation processes that are deregulated in the pathology induced by SARS-CoV-2. The identification of agents, including naturally occurring substances such as flavonoids, represents great approach potentially utilizable in the management of COVID-19. Although not clinically investigated yet, the applicability of flavonoids against COVID-19 could be a promising strategy due to a broad spectrum of their biological activities

    Cardiovascular and renal outcomes with empagliflozin in heart failure

    No full text
    BACKGROUND Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce the risk of hospitalization for heart failure in patients regardless of the presence or absence of diabetes. More evidence is needed regarding the effects of these drugs in patients across the broad spectrum of heart failure, including those with a markedly reduced ejection fraction. METHODS In this double-blind trial, we randomly assigned 3730 patients with class II, III, or IV heart failure and an ejection fraction of 40% or less to receive empagliflozin (10 mg once daily) or placebo, in addition to recommended therapy. The primary outcome was a composite of cardiovascular death or hospitalization for worsening heart failure. RESULTS During a median of 16 months, a primary outcome event occurred in 361 of 1863 patients (19.4%) in the empagliflozin group and in 462 of 1867 patients (24.7%) in the placebo group (hazard ratio for cardiovascular death or hospitalization for heart failure, 0.75; 95% confidence interval [CI], 0.65 to 0.86; P<0.001). The effect of empagliflozin on the primary outcome was consistent in patients regardless of the presence or absence of diabetes. The total number of hospitalizations for heart failure was lower in the empagliflozin group than in the placebo group (hazard ratio, 0.70; 95% CI, 0.58 to 0.85; P<0.001). The annual rate of decline in the estimated glomerular filtration rate was slower in the empagliflozin group than in the placebo group (-0.55 vs. -2.28 ml per minute per 1.73 m2 of body-surface area per year, P<0.001), and empagliflozin-treated patients had a lower risk of serious renal outcomes. Uncomplicated genital tract infection was reported more frequently with empagliflozin. CONCLUSIONS Among patients receiving recommended therapy for heart failure, those in the empagliflozin group had a lower risk of cardiovascular death or hospitalization for heart failure than those in the placebo group, regardless of the presence or absence of diabetes
    corecore