1 research outputs found
An exponential lower bound for Individualization-Refinement algorithms for Graph Isomorphism
The individualization-refinement paradigm provides a strong toolbox for
testing isomorphism of two graphs and indeed, the currently fastest
implementations of isomorphism solvers all follow this approach. While these
solvers are fast in practice, from a theoretical point of view, no general
lower bounds concerning the worst case complexity of these tools are known. In
fact, it is an open question whether individualization-refinement algorithms
can achieve upper bounds on the running time similar to the more theoretical
techniques based on a group theoretic approach.
In this work we give a negative answer to this question and construct a
family of graphs on which algorithms based on the individualization-refinement
paradigm require exponential time. Contrary to a previous construction of
Miyazaki, that only applies to a specific implementation within the
individualization-refinement framework, our construction is immune to changing
the cell selector, or adding various heuristic invariants to the algorithm.
Furthermore, our graphs also provide exponential lower bounds in the case when
the -dimensional Weisfeiler-Leman algorithm is used to replace the standard
color refinement operator and the arguments even work when the entire
automorphism group of the inputs is initially provided to the algorithm.Comment: 21 page