5 research outputs found

    SCN5A-1795insD founder variant:a unique Dutch experience spanning 7 decades

    Get PDF
    The SCN5A-1795insD founder variant is a unique SCN5A gene variant found in a large Dutch pedigree that first came to attention in the late 1950s. To date, this is still one of the largest and best described SCN5A founder families worldwide. It was the first time that a single pathogenic variant in SCN5A proved to be sufficient to cause a sodium channel overlap syndrome. Affected family members displayed features of Brugada syndrome, cardiac conduction disease and long QT syndrome type 3, thus encompassing features of both loss and gain of sodium channel function. This brief summary takes us past 70 years of clinical experience and over 2 decades of research. It is remarkable to what extent researchers and clinicians have managed to gain understanding of this complex phenotype in a relatively short time. Extensive clinical, genetic, electrophysiological and molecular studies have provided fundamental insights into SCN5A and the cardiac sodium channel Nav1.5.</p

    Sex-specific aspects of phospholamban cardiomyopathy:The importance and prognostic value of low-voltage electrocardiograms

    Get PDF
    Background: A pathogenic variant in the gene encoding phospholamban (PLN), a protein that regulates calcium homeostasis of cardiomyocytes, causes PLN cardiomyopathy. It is characterized by a high arrhythmic burden and can progress to severe cardiomyopathy. Risk assessment guides implantable cardioverter-defibrillator therapy and benefits from personalization. Whether sex-specific differences in PLN cardiomyopathy exist is unknown. Objective: The purpose of this study was to improve the accuracy of PLN cardiomyopathy diagnosis and risk assessment by investigating sex-specific aspects. Methods: We analyzed a multicenter cohort of 933 patients (412 male, 521 female) with the PLN p.(Arg14del) pathogenic variant following up on a recently developed PLN risk model. Sex-specific differences in the incidence of risk model components were investigated: low-voltage electrocardiogram (ECG), premature ventricular contractions, negative T waves, and left ventricular ejection fraction. Results: Sustained ventricular arrhythmias (VAs) occurred in 77 males (18.7%) and 61 females (11.7%) (P =.004). Of the 933 cohort members, 287 (31%) had ≥1 low-voltage ECG during follow-up (180 females [63%], 107 males [37%]; P =.006). Female sex, age, age at clinical presentation, and proband status predicted low-voltage ECG during follow-up (area under the curve: 0.78). Sustained VA-free survival was lowest in males with low-voltage ECG (P <.001). Conclusion: Low-voltage ECGs predict sustained VA and are a component of the PLN risk model. Low-voltage ECGs are more common in females, yet prognostic value is greater in males. Future studies should determine the impact of this difference on the risk prediction of PLN cardiomyopathy and possibly other cardiomyopathies

    Prediction of ventricular arrhythmia in phospholamban p.Arg14del mutation carriers-reaching the frontiers of individual risk prediction

    Get PDF
    AIMS: This study aims to improve risk stratification for primary prevention implantable cardioverter defibrillator (ICD) implantation by developing a new mutation-specific prediction model for malignant ventricular arrhythmia (VA) in phospholamban (PLN) p.Arg14del mutation carriers. The proposed model is compared to an existing PLN risk model. METHODS AND RESULTS: Data were collected from PLN p.Arg14del mutation carriers with no history of malignant VA at baseline, identified between 2009 and 2020. Malignant VA was defined as sustained VA, appropriate ICD intervention, or (aborted) sudden cardiac death. A prediction model was developed using Cox regression. The study cohort consisted of 679 PLN p.Arg14del mutation carriers, with a minority of index patients (17%) and male sex (43%), and a median age of 42 years [interquartile range (IQR) 27–55]. During a median follow-up of 4.3 years (IQR 1.7–7.4), 72 (10.6%) carriers experienced malignant VA. Significant predictors were left ventricular ejection fraction, premature ventricular contraction count/24 h, amount of negative T waves, and presence of low-voltage electrocardiogram. The multivariable model had an excellent discriminative ability {C-statistic 0.83 [95% confidence interval (CI) 0.78–0.88]}. Applying the existing PLN risk model to the complete cohort yielded a C-statistic of 0.68 (95% CI 0.61–0.75). CONCLUSION: This new mutation-specific prediction model for individual VA risk in PLN p.Arg14del mutation carriers is superior to the existing PLN risk model, suggesting that risk prediction using mutation-specific phenotypic features can improve accuracy compared to a more generic approach

    Sex-specific aspects of phospholamban cardiomyopathy: The importance and prognostic value of low-voltage electrocardiograms

    No full text
    Background: A pathogenic variant in the gene encoding phospholamban (PLN), a protein that regulates calcium homeostasis of cardiomyocytes, causes PLN cardiomyopathy. It is characterized by a high arrhythmic burden and can progress to severe cardiomyopathy. Risk assessment guides implantable cardioverter-defibrillator therapy and benefits from personalization. Whether sex-specific differences in PLN cardiomyopathy exist is unknown. Objective: The purpose of this study was to improve the accuracy of PLN cardiomyopathy diagnosis and risk assessment by investigating sex-specific aspects. Methods: We analyzed a multicenter cohort of 933 patients (412 male, 521 female) with the PLN p.(Arg14del) pathogenic variant following up on a recently developed PLN risk model. Sex-specific differences in the incidence of risk model components were investigated: low-voltage electrocardiogram (ECG), premature ventricular contractions, negative T waves, and left ventricular ejection fraction. Results: Sustained ventricular arrhythmias (VAs) occurred in 77 males (18.7%) and 61 females (11.7%) (P =.004). Of the 933 cohort members, 287 (31%) had ≥1 low-voltage ECG during follow-up (180 females [63%], 107 males [37%]; P =.006). Female sex, age, age at clinical presentation, and proband status predicted low-voltage ECG during follow-up (area under the curve: 0.78). Sustained VA-free survival was lowest in males with low-voltage ECG (P <.001). Conclusion: Low-voltage ECGs predict sustained VA and are a component of the PLN risk model. Low-voltage ECGs are more common in females, yet prognostic value is greater in males. Future studies should determine the impact of this difference on the risk prediction of PLN cardiomyopathy and possibly other cardiomyopathies

    Prediction of ventricular arrhythmia in phospholamban p.Arg14del mutation carriers-reaching the frontiers of individual risk prediction

    No full text
    Aims: This study aims to improve risk stratification for primary prevention implantable cardioverter defibrillator (ICD) implantation by developing a new mutation-specific prediction model for malignant ventricular arrhythmia (VA) in phospholamban (PLN) p.Arg14del mutation carriers. The proposed model is compared to an existing PLN risk model. Methods and results: Data were collected from PLN p.Arg14del mutation carriers with no history of malignant VA at baseline, identified between 2009 and 2020. Malignant VA was defined as sustained VA, appropriate ICD intervention, or (aborted) sudden cardiac death. A prediction model was developed using Cox regression. The study cohort consisted of 679 PLN p.Arg14del mutation carriers, with a minority of index patients (17%) and male sex (43%), and a median age of 42 years [interquartile range (IQR) 27-55]. During a median follow-up of 4.3 years (IQR 1.7-7.4), 72 (10.6%) carriers experienced malignant VA. Significant predictors were left ventricular ejection fraction, premature ventricular contraction count/24 h, amount of negative T waves, and presence of low-voltage electrocardiogram. The multivariable model had an excellent discriminative ability {C-statistic 0.83 [95% confidence interval (CI) 0.78-0.88]}. Applying the existing PLN risk model to the complete cohort yielded a C-statistic of 0.68 (95% CI 0.61-0.75). Conclusion: This new mutation-specific prediction model for individual VA risk in PLN p.Arg14del mutation carriers is superior to the existing PLN risk model, suggesting that risk prediction using mutation-specific phenotypic features can improve accuracy compared to a more generic approach
    corecore