9 research outputs found

    Perturbation-theory analysis of ionization by a chirped few-cycle attosecond pulse

    Get PDF
    The angular distribution of electrons ionized from an atom by a chirped few-cycle attosecond pulse is analyzed using perturbation theory (PT), keeping terms in the transition amplitude up to second order in the pulse electric field. The dependence of the asymmetry in the ionized electron distributions on both the chirp and the carrier-envelope phase (CEP) of the pulse are explained using a simple analytical formula that approximates the exact PT result. This approximate formula (in which the chirp dependence is explicit) reproduces reasonably well the chirp-dependent oscillations of the electron angular distribution asymmetries found numerically by Peng et al. [Phys. Rev. A 80, 013407 (2009)]. It can also be used to determine the chirp rate of the attosecond pulse from the measured electron angular distribution asymmetry

    Polarization control of direct (non-sequential) two-photon double ionization of He

    Get PDF
    An ab initio parametrization of the doubly-differential cross section (DDCS) for two-photon double ionization (TPDI) from an s2 subshell of an atom in a 1S0-state is presented. Analysis of the elliptic dichroism (ED) effect in the DDCS for TPDI of He and its comparison with the same effect in the concurrent process of sequential double ionization shows their qualitative and quantitative differences, thus providing a means to control and to distinguish sequential and non-sequential processes by measuring the relative ED parameter

    Attosecond pulse carrier-envelope phase effects on ionized electron momentum and energy distributions: roles of frequency, intensity and an additional IR pulse

    Get PDF
    The effects of the carrier-envelope phase (CEP) of a few-cycle attosecond pulse on ionized electron momentum and energy spectra are analyzed, both with and without an additional few-cycle IR pulse. In the absence of an IR pulse, the CEP-induced asymmetries in the ionized electron momentum distributions are shown to vary as the 3/2 power of the attosecond pulse intensity. These asymmetries are also found to satisfy an approximate scaling law involving the frequency and intensity of the attosecond pulse. In the presence of even a very weak IR pulse (having an intensity of the order of 1011–1012 W cm−2), the attosecond pulse CEP-induced asymmetries in the ionized electron momentum distributions are found to be significantly augmented. In addition, for higher IR laser intensities, we observe for low electron energies peaks separated by the IR photon energy in one electron momentum direction along the laser polarization axis; in the opposite direction, we find structured peaks that are spaced by twice the IR photon energy. Possible physical mechanisms for such asymmetric, low-energy structures in the ionized electron momentum distribution are proposed. Our results are based on single-active-electron solutions of the three-dimensional, time-dependent Schrödinger equation including atomic potentials appropriate for the H and He atoms

    Perturbation theory analysis of attosecond photoionization

    Get PDF
    Ionization of an atom by a few-cycle attosecond xuv pulse is analyzed using perturbation theory (PT), keeping terms in the transition amplitude up to second order in the pulse electric field. Within the PT approach, we present an ab initio parametrization of the ionized electron angular distribution (AD) using rotational invariance and symmetry arguments. This parametrization gives analytically the dependence of the AD on the carrier envelope phase (CEP), the polarization of the pulse, and on the ionized electron momentum direction, p^ . For the general case of an elliptically polarized pulse, we show that interference of the first- and second-order transition amplitudes causes a CEP-dependent asymmetry (with respect to p^ → −p^) and both elliptic and circular dichroism effects. All of these effects are maximal in the polarization plane and depend not only on the CEP but also on the phase of dynamical atomic parameters that enter our parametrization of the AD. Within the single active electron model of an atom, for an initial s or p state we define all dynamical parameters in terms of radial matrix elements (analytic expressions for which are given for the Coulomb and zero-range potentials). For ionization of the H atom by linearly polarized pulses, our PT results are in excellent agreement with results of numerical solutions of the time-dependent Schrödinger equation of Peng et al. [New J. Phys. 10, 025030 (2008)]. Also, our numerical results show that the asymmetries and dichroism effects at low electron energies have a different physical origin from those at high electron energies. Moreover, our results for Gaussian and cosine-squared pulse shapes are in good qualitative agreement. Finally, we show that our analytic formulas may prove useful for determining few-cycle extreme ultraviolet (xuv) pulse characteristics, such as the CEP and the polarization

    Few-cycle attosecond pulse chirp effects on asymmetries in ionized electron momentum distributions

    Get PDF
    The momentum distributions of electrons ionized from H atoms by chirped few-cycle attosecond pulses are investigated by numerically solving the time-dependent Schrödinger equation. The central carrier frequency of the pulse is chosen to be 25 eV, which is well above the ionization threshold. The asymmetry (or difference) in the yield of electrons ionized along and opposite to the direction of linear laser polarization is found to be very sensitive to the pulse chirp (for pulses with fixed carrier-envelope phase), both for a fixed electron energy and for the energy-integrated yield. In particular, the larger the pulse chirp, the larger the number of times the asymmetry changes sign as a function of ionized electron energy. For a fixed chirp, the ionized electron asymmetry is found to be sensitive also to the carrier-envelope phase of the few-cycle pulse

    Attosecond Streaking in the Low-Energy Region as a Probe of Rescattering

    Get PDF
    The dynamics of low-energy photoelectrons (PEs) ionized by a single attosecond pulse in the presence of an intense infrared (IR) laser field is investigated. Whereas attosecond streaking usually involves momentum shifts of high-energy PEs, when PEs have low initial kinetic energies, the IR field can control the continuum-electron dynamics by inducing PE scattering from the residual ion. A semiclassical model is used to show that particular PE trajectories in the continuum involving electron-ion scattering explain the interference patterns exhibited in the low-energy PE spectrum. We confirm the effects of the trajectories by means of a full quantum simulation
    corecore