4 research outputs found

    Rho and F-actin self-organize within an artificial cell cortex

    Get PDF
    The cell cortex, comprised of the plasma membrane and underlying cytoskeleton, undergoes dynamic reorganizations during a variety of essential biological processes including cell adhesion, cell migration, and cell division(1,2). During cell division and cell locomotion, for example, waves of filamentous-actin (F-actin) assembly and disassembly develop in the cell cortex in a process termed “cortical excitability”(3–7). In developing frog and starfish embryos, cortical excitability is generated through coupled positive and negative feedback, with rapid activation of Rho-mediated F-actin assembly followed in space and time by F-actin-dependent inhibition of Rho(7,8). These feedback loops are proposed to serve as a mechanism for amplification of active Rho signaling at the cell equator to support furrowing during cytokinesis, while also maintaining flexibility for rapid error correction in response to movement of the mitotic spindle during chromosome segregation(9). In this paper, we develop an artificial cortex based on Xenopus egg extract and supported lipid bilayers (SLBs), to investigate cortical Rho and F-actin dynamics(10). This reconstituted system spontaneously develops two distinct types of self-organized cortical dynamics: singular excitable Rho and F-actin waves, and non-traveling oscillatory Rho and F-actin patches. Both types of dynamic patterns have properties and dependencies similar to the excitable dynamics previously characterized in vivo(7). These findings directly support the long-standing speculation that the cell cortex is a self-organizing structure and present a novel approach for investigating mechanisms of Rho-GTPase-mediated cortical dynamics

    Muscle‐directed gene therapy corrects Pompe disease and uncovers species‐specific GAA immunogenicity

    No full text
    Abstract Pompe disease is a severe disorder caused by loss of acid α‐glucosidase (GAA), leading to glycogen accumulation in tissues and neuromuscular and cardiac dysfunction. Enzyme replacement therapy is the only available treatment. AT845 is an adeno‐associated viral vector designed to express human GAA specifically in skeletal muscle and heart. Systemic administration of AT845 in Gaa−/− mice led to a dose‐dependent increase in GAA activity, glycogen clearance in muscles and heart, and functional improvement. AT845 was tolerated in cynomolgus macaques at low doses, while high doses caused anti‐GAA immune response, inflammation, and cardiac abnormalities resulting in unscheduled euthanasia of two animals. Conversely, a vector expressing the macaque GAA caused no detectable pathology, indicating that the toxicity observed with AT845 was an anti‐GAA xenogeneic immune response. Western blot analysis showed abnormal processing of human GAA in cynomolgus muscle, adding to the species‐specific effects of enzyme expression. Overall, these studies show that AAV‐mediated GAA delivery to muscle is efficacious in Gaa−/− mice and highlight limitations in predicting the toxicity of AAV vectors encoding human proteins in non‐human species

    The nucleotide prodrug CERC‐913 improves mtDNA content in primary hepatocytes from DGUOK‐deficient rats

    Get PDF
    Loss‐of‐function mutations in the deoxyguanosine kinase (DGUOK) gene result in a mitochondrial DNA (mtDNA) depletion syndrome. DGUOK plays an important role in converting deoxyribonucleosides to deoxyribonucleoside monophosphates via the salvage pathway for mtDNA synthesis. DGUOK deficiency manifests predominantly in the liver; the most common cause of death is liver failure within the first year of life and no therapeutic options are currently available. in vitro supplementation with deoxyguanosine or deoxyguanosine monophosphate (dGMP) were reported to rescue mtDNA depletion in DGUOK‐deficient, patient‐derived fibroblasts and myoblasts. CERC‐913, a novel ProTide prodrug of dGMP, was designed to bypass defective DGUOK while improving permeability and stability relative to nucleoside monophosphates. To evaluate CERC‐913 for its ability to rescue mtDNA depletion, we developed a primary hepatocyte culture model using liver tissue from DGUOK‐deficient rats. DGUOK knockout rat hepatocyte cultures exhibit severely reduced mtDNA copy number (~10%) relative to wild type by qPCR and mtDNA content remains stable for up to 8 days in culture. CERC‐913 increased mtDNA content in DGUOK‐deficient hepatocytes up to 2.4‐fold after 4 days of treatment in a dose‐dependent fashion, which was significantly more effective than dGMP at similar concentrations. These early results suggest primary hepatocyte culture is a useful model for the study of mtDNA depletion syndromes and that CERC‐913 treatment can improve mtDNA content in this model

    Voluntary wheel running complements microdystrophin gene therapy to improve muscle function in mdx mice

    No full text
    We tested the hypothesis that voluntary wheel running would complement microdystrophin gene therapy to improve muscle function in young mdx mice, a model of Duchenne muscular dystrophy. mdx mice injected with a single dose of AAV9-CK8-microdystrophin or vehicle at age 7 weeks were assigned to three groups: mdxRGT (run, gene therapy), mdxGT (no run, gene therapy), or mdx (no run, no gene therapy). Wild-type (WT) mice were assigned to WTR (run) and WT (no run) groups. WTR and mdxRGT performed voluntary wheel running for 21 weeks; remaining groups were cage active. Robust expression of microdystrophin occurred in heart and limb muscles of treated mice. mdxRGT versus mdxGT mice showed increased microdystrophin in quadriceps but decreased levels in diaphragm. mdx final treadmill fatigue time was depressed compared to all groups, improved in mdxGT, and highest in mdxRGT. Both weekly running distance (km) and final treadmill fatigue time for mdxRGT and WTR were similar. Remarkably, mdxRGT diaphragm power was only rescued to 60% of WT, suggesting a negative impact of running. However, potential changes in fiber type distribution in mdxRGT diaphragms could indicate an adaptation to trade power for endurance. Post-treatment in vivo maximal plantar flexor torque relative to baseline values was greater for mdxGT and mdxRGT versus all other groups. Mitochondrial respiration rates from red quadriceps fibers were significantly improved in mdxGT animals, but the greatest bioenergetic benefit was observed in the mdxRGT group. Additional assessments revealed partial to full functional restoration in mdxGT and mdxRGT muscles relative to WT. These data demonstrate that voluntary wheel running combined with microdystrophin gene therapy in young mdx mice improved whole-body performance, affected muscle function differentially, mitigated energetic deficits, but also revealed some detrimental effects of exercise. With microdystrophin gene therapy currently in clinical trials, these data may help us understand the potential impact of exercise in treated patients
    corecore