78 research outputs found

    A Kir6.2 mutation causing severe functional effects in vitro produces neonatal diabetes without the expected neurological complications

    Get PDF
    AIMS/HYPOTHESIS: Heterozygous activating mutations in the pancreatic ATP-sensitive K+ channel cause permanent neonatal diabetes mellitus (PNDM). This results from a decrease in the ability of ATP to close the channel, which thereby suppresses insulin secretion. PNDM mutations that cause a severe reduction in ATP inhibition may produce additional symptoms such as developmental delay and epilepsy. We identified a heterozygous mutation (L164P) in the pore-forming (Kir6.2) subunit of the channel in three unrelated patients and examined its functional effects. METHODS: The patients (currently aged 2, 8 and 20 years) developed diabetes shortly after birth. The two younger patients attempted transfer to sulfonylurea therapy but were unsuccessful (up to 1.1 mg kg(-1) day(-1)). They remain insulin dependent. None of the patients displayed neurological symptoms. Functional properties of wild-type and mutant channels were examined by electrophysiology in Xenopus oocytes. RESULTS: Heterozygous (het) and homozygous L164P K(ATP) channels showed a marked reduction in channel inhibition by ATP. Consistent with its predicted location within the pore, L164P enhanced the channel open state, which explains the reduction in ATP sensitivity. HetL164P currents exhibited greatly increased whole-cell currents that were unaffected by sulfonylureas. This explains the inability of sulfonylureas to ameliorate the diabetes of affected patients. CONCLUSIONS/INTERPRETATION: Our results provide the first demonstration that mutations such as L164P, which produce a severe reduction in ATP sensitivity, do not inevitably cause developmental delay or neurological problems. However, the neonatal diabetes of these patients is unresponsive to sulfonylurea therapy. Functional analysis of PNDM mutations can predict the sulfonylurea response

    Detecting multivariate differentially expressed genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression is governed by complex networks, and differences in expression patterns between distinct biological conditions may therefore be complex and multivariate in nature. Yet, current statistical methods for detecting differential expression merely consider the univariate difference in expression level of each gene in isolation, thus potentially neglecting many genes of biological importance.</p> <p>Results</p> <p>We have developed a novel algorithm for detecting multivariate expression patterns, named Recursive Independence Test (RIT). This algorithm generalizes differential expression testing to more complex expression patterns, while still including genes found by the univariate approach. We prove that RIT is consistent and controls error rates for small sample sizes. Simulation studies confirm that RIT offers more power than univariate differential expression analysis when multivariate effects are present. We apply RIT to gene expression data sets from diabetes and cancer studies, revealing several putative disease genes that were not detected by univariate differential expression analysis.</p> <p>Conclusion</p> <p>The proposed RIT algorithm increases the power of gene expression analysis by considering multivariate effects while retaining error rate control, and may be useful when conventional differential expression tests yield few findings.</p

    Reversible changes in pancreatic islet structure and function produced by elevated blood glucose

    Get PDF
    Diabetes is characterized by hyperglycaemia due to impaired insulin secretion and aberrant glucagon secretion resulting from changes in pancreatic islet cell function and/or mass. The extent to which hyperglycaemia per se underlies these alterations remains poorly understood. Here we show that β-cell-specific expression of a human activating KATP channel mutation in adult mice leads to rapid diabetes and marked alterations in islet morphology, ultrastructure and gene expression. Chronic hyperglycaemia is associated with a dramatic reduction in insulin-positive cells and an increase in glucagon-positive cells in islets, without alterations in cell turnover. Furthermore, some β-cells begin expressing glucagon, whilst retaining many β-cell characteristics. Hyperglycaemia, rather than KATP channel activation, underlies these changes, as they are prevented by insulin therapy and fully reversed by sulphonylureas. Our data suggest that many changes in islet structure and function associated with diabetes are attributable to hyperglycaemia alone and are reversed when blood glucose is normalized

    Genetički polimorfizmi u dijabetesu: Utjecaj na terapiju oralnim antidijabeticima

    Get PDF
    Due to new genetic insights, etiologic classification of diabetes is under constant scrutiny. Hundreds, or even thousands, of genes are linked with type 2 diabetes. Three common variants (Lys23 of KCNJ11, Pro12 of PPARG, and the T allele at rs7903146 of TCF7L2) have been shown to be predisposed to type 2 diabetes mellitus across many large studies. Individually, each of these polymorphisms is only moderately predisposed to type 2 diabetes. On the other hand, monogenic forms of diabetes such as MODY and neonatal diabetes are characterized by unique clinical features and the possibility of applying a tailored treatment. Genetic polymorphisms in drug-metabolizing enzymes, transporters, receptors, and other drug targets have been linked to interindividual differences in the efficacy and toxicity of a number of medications. Mutations in genes important in drug absorption, distribution, metabolism and excretion (ADME) play a critical role in pharmacogenetics of diabetes. There are currently five major classes of oral pharmacological agents available to treat type 2 diabetes: sulfonylureas, meglitinides, metformin (a biguanide), thiazolidinediones, and α-glucosidase inhibitors. Other classes are also mentioned in literature. In this work, different types of genetic mutations (mutations of the gene for glucokinase, HNF 1, HNF1ß and Kir6.2 and SUR1 subunit of KATP channel, PPAR-γ, OCT1 and OCT2, cytochromes, direct drug-receptor (KCNJ11), as well as the factors that influence the development of the disease (TCF7L2) and variants of genes that lead to hepatosteatosis caused by thiazolidinediones) and their influence on the response to therapy with oral antidiabetics will be reviewed.Dijabetes tipa 2 dosegao je proporcije epidemije u SAD (> 18 milijuna) i cijelom svijetu (170 milijuna oboljelih osoba) te ima tendenciju daljnjeg dramatičnog rasta. Stoga se u posljednje vrijeme ulažu napori da se otkriju i razviju novi farmakološki agensi za liječenje ove bolesti. Klasifikacija šećerne bolesti proširena je uspjesima istraživača na području genetike. Da bismo razumjeli farmakogenetiku antidijabetika neophodno je razumjeti genetiku samog dijabetesa. Kao što će biti prikazano u ovom radu veliki broj gena koji su povezani s razvojem dijabetesa takođe utječu i na odgovor na terapiju antidijabeticima. S druge strane, mutacije gena koji utječu na ADME (apsorpcija, distribucija, metabolizam i ekskrecija) lijeka imaju značajan utjecaj na farmakogenetiku oralnih antidijabetika. Utvrđeno je da je dijabetes genetički heterogena bolest. Uobičajeni oblici dijabetesa su gotovo uvijek poligenski i za razvoj same bolesti vrlo su značajne snažne interakcije među različitim genima kao i između gena i okoliša. Zbog toga mutacije ili polimorfizmi koji u manjoj mjeri utječu na funkciju gena mogu postati klinički značajni samo u slučaju kada se kombiniraju s drugim faktorima odnosno genima. Smatra se da u razvoju dijabetesa mogu sudjelovati stotine pa čak i tisuće gena. Do 2006. identificirano je nekoliko uobičajenih alela koji povećavaju rizik za razvoj dijabetesa, od kojih su najznačajniji PPARG (Pro12), KCNJ11 (Lys23) i TCF7L2 (T na rs7903146). Do danas je najveći uspjeh postignut u identifikaciji gena odgovornih za razmjerno rijetke oblike ove bolesti poput ”Maturity-onset diabetes of the young” (MODY) i neonatalnog dijabetesa. Monogenske oblike dijabetesa odlikuju jedinstvene kliničke karakteristike i mogućnost primjene individualnog tretmana. Genetički polimorfizmi enzima koji utječu na metabolizam lijekova, transportera, receptora i drugih ciljeva djelovanja lijekova povezani su s interindividualnim razlikama u efikasnosti i toksičnosti mnogih lijekova. Vrlo je važno da se na temelju farmakogenetičkih istraživanja mogu predvidjeti neki neželjeni efekti lijekova. Trenutačno postoji pet glavnih klasa oralnih antidijabetika: sulfoniluree, meglitinidi, metformin (bigvanid), tiazolidindioni i inhibitori α-glukozidaze. U literaturi se također spominju inhibitori dipeptidil peptidaze IV (DPP-IV), selektivni antagonisti kanabinoidnog receptora 1 (CB-1), glukagonu slični peptid 1 mimetici i amilin mimetici. Razumijevanje mehanizama koji rezultiraju disfunkcijom β stanica na fiziološkom i molekularnom nivou neophodno je za napredak u razumijevanju tretmana dijabetesa. U ovom radu dat je pregled različitih genetičkih mutacija (mutacije gena za glukokinazu, HNF 1, HNF1ß, Kir6.2 i SUR 1 podjedinicu KATP kanala ß stanica, PPAR-γ, OCT1 i OCT2, citohrome, KCNJ11, faktore koji utječu na razvoj bolesti (TCF7L2) i varijante gena koji dovode do hepatosteatoze uzrokovane tiazolidindionima) te njihov utjecaj na odgovor na terapiju oralnim antidijabeticima

    Reversible changes in pancreatic islet structure and function produced by elevated blood glucose

    No full text
    Diabetes is characterized by hyperglycaemia due to impaired insulin secretion and aberrant glucagon secretion resulting from changes in pancreatic islet cell function and/or mass. The extent to which hyperglycaemia per se underlies these alterations remains poorly understood. Here we show that β-cell-specific expression of a human activating KATP channel mutation in adult mice leads to rapid diabetes and marked alterations in islet morphology, ultrastructure and gene expression. Chronic hyperglycaemia is associated with a dramatic reduction in insulin-positive cells and an increase in glucagon-positive cells in islets, without alterations in cell turnover. Furthermore, some β-cells begin expressing glucagon, whilst retaining many β-cell characteristics. Hyperglycaemia, rather than KATP channel activation, underlies these changes, as they are prevented by insulin therapy and fully reversed by sulphonylureas. Our data suggest that many changes in islet structure and function associated with diabetes are attributable to hyperglycaemia alone and are reversed when blood glucose is normalized
    corecore